
Feature Interaction Analysis of the Feature-Oriented
Requirements-Modelling Language Using Alloy

David Dietrich, Pourya Shaker, Joanne M. Atlee, and Derek Rayside
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

{d4dietri, p2shaker, jmatlee, drayside}@uwaterloo.ca

Jan Gorzny
University of Toronto

Toronto, Canada
jgorzny@cs.toronto.edu

ABSTRACT
Feature-oriented software development (FOSD) has several
benefits over traditional development practices, but also in-
troduces the problem of feature interactions. We have de-
fined a method for detecting semantic feature interactions in
models expressed in the feature-oriented requirements mod-
elling language (FORML) by translating a FORML model
into an Alloy model and using the Alloy analyzer to de-
tect interactions. We have implemented a tool that handles
the translation and interaction analysis. In this paper we
present our method for detecting feature interactions, show
that it scales well and discuss how it can detect feature in-
teractions in partial models.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms
Verification

Keywords
Feature-oriented requirements, Feature interactions

1. INTRODUCTION
Feature-oriented software development (FOSD) favours the
treatment of features as first-class entities during all devel-
opment phases. A major benefit of FOSD is the ability to
decompose a software project into features such that mul-
tiple products can be derived from different combinations
of features. However, features may not be separate con-
cerns: they may conflict over the values of shared variables
or may indirectly interact with each other over their effects
on the environment [2]. The feature-oriented requirements-
modelling language (FORML) [16] is a modelling language
created to support FOSD concepts. In this paper we present
a method for detecting unintended feature interactions in
FORML models.

In the FORML, the environment is modelled for all features,
and each feature’s behaviour is modelled as a separate UML-
like state-machine [15] that can be composed with other fea-
ture’s models to create a model of a software product line
(SPL). Features interact in their actions on a shared envi-
ronment. We have chosen to use the FORML because it
defines the composition of features as well as the meaning
of a feature interaction. This has allowed us to focus on the
problem of detecting feature interactions.

We use the Alloy analyzer to detect feature interactions au-
tomatically [10]. A feature interaction occurs when the ac-
tions performed by two separate features conflict, or when
an action violates a specified constraint. During the transla-
tion from FORML to Alloy, an Alloy assertion is generated
for every pair of transitions that can execute concurrently. If
such an assertion does not hold, then the pair of transitions
may interact (false positives may occur due to the static na-
ture of our analysis). The Alloy visualizer can be used to
view the environmental state exactly before the interaction
occurs. By using the Alloy visualizer, we are able to display
interactions to users in an intuitive manner.

The contributions of our paper are:

1. Interaction-detecting assertions are generated automa-
tically, based on the feature models being analyzed.
Potential interactions do not need to be known in ad-
vance.

2. The analysis works on partial models of feature be-
haviour.

3. Intended feature interactions are not reported – only
unintended interactions.

4. We have addressed the scalability issues that arise by
reusing the set of Alloy-generated model instances.

The rest of this paper is organized as follows. Section 2 pro-
vides detail about the translation from FORML to Alloy.
A short introduction to the FORML is given in Section 2.1.
This paper assumes that the reader is familiar with the Alloy
language. Sections 3 and 4 discuss our method of detecting
interactions and the visualization of counter-examples when
an interaction is detected. Section 5 presents a small case
study, and Section 6 discusses the results of our work. Sec-
tion 7 presents related work, and Section 8 presents some
concluding remarks and future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MoDeVVa’12 September 30 2012, Innsbruck, Austria
Copyright 2012 ACM 978-1-4503-1805-3/12/09 ...$15.00.

17



2. TRANSLATING FORML TO ALLOY
We have created a tool, FORML2Alloy, that automatically
translates a FORML model into Alloy. The input provided
to FORML2Alloy is a textual FORML model (FORML was
created as a graphical language, but a textual grammar has
also been defined). The translator is written in the Turing
eXtender Language (TXL) [7].

The remainder of this Section provides a brief introduction
to the FORML language (Section 2.1) and describes the
translation process in detail (Section 2.2). A detailed de-
scription of the FORML can be found in a recent paper by
Shaker et al. [16]. Throughout the rest of this paper we will
use a running example of a feature interaction between a
BDS and a Cruise Control (CC) feature. BDS handles the
basic driving functionality of a vehicle (acceleration, deceler-
ation, steering). CC maintains the vehicle speed at a driver
set limit. The behaviour model for CC will not be shown
due to space constraints, but can be found in the paper by
Shaker et al.

2.1 FORML
The FORML is composed of two sub-models: a world model
and a behaviour model. The syntax and semantics of the
world model is similar to a UML 2.0 class diagram. The
world model defines all of the environmental phenomena
that are relevant to the requirements of a set of features.
The world model is composed of a number of concepts, which
represent types of environmental phenomena, relationships
between them, and the features in the software product line.
A feature concept (bordered by dashed lines) describes the
variables, and input and output messages of a specific fea-
ture. An example of a world model is given in Figure 1.

The corresponding FORML behaviour model specifies how
each feature reacts to input events from the environment
and generates output actions that change the environment.
The FORML behaviour model is expressed as a set of mod-
ified UML 2.0 state-machine fragments; with one or more
fragments describing the behaviour of each feature. Individ-
ual fragments are composed together to form one large state
machine that describes the behaviour of a SPL. Transitions
in a state-machine have labels:

transitionName: trigger [guard] / actions

For example, in the BDS feature (Figure 2) transition t3
states that when the Accelerate signal occurs, the AutoSoft-
Car’s acceleration is set to the value returned by the accel-
erate() function. The behaviour model contains support for
transition priorities (the priority on transition t4 states that
if t4 and t3 are simultaneously enabled then only t4 exe-
cutes) and transition overrides (i.e., a transition can override
and pre-empt all of the actions of a simultaneously occur-
ring transition). Priorities and overrides allow the devel-
oper to explicitly model cases where one feature is intended
to change the behaviour of another feature (what we call
intended interactions).

2.2 Translation Process
The entire FORML world model is translated into Alloy.
Every concept in the world model (e.g., RoadObject in Fig-
ure 1) is translated into an Alloy type signature. Abstract
concepts and inheritance of concepts are also translated into

Figure 1: A FORML world model.

their appropriate Alloy counterparts. Multiple inheritance
of concepts is not supported by the translation [1].

In the translated model, there is a single type signature that
defines the state of the world at a single point in time (re-
ferred to as the world state). The world-state signature in-
cludes sets of all the concepts in the world model, relation-
ships between concepts, and each concept’s attributes. An
instance of the world-state signature is a single instance of
the corresponding FORML world model. For example, the
RoadObject concept would be translated as:

sig RoadObject extends MapObject{}
sig WS { // World State

RoadObjects: set RoadObject,
RoadObject_velocity: RoadObjects -> Vector,
RoadObject_acceleration: RoadObjects -> Int,
// additional concepts

}

Constraints over the world model are translated into two
Alloy predicates. The world-state constraints (WSC) pred-
icate contains constraints on a single world state, such as
cardinality constraints on relations and constraints related
to attribute values. The world-state-transition constraints
(WSTC) predicate specifies constraints on how a world state
can change; they are constraints over consecutive world states.
For example, in Figure 1, a RoadSegment must contain 1..*
Lanes, and if a RoadSegment is removed, then its Lane ob-
jects are also removed.

The behaviour model of a feature changes the environment
through world-change actions (WCAs), of which there are
four kinds: (1) adding an object to the world state, (2)
adding a message to the world state, (3) removing an object
from the world state, and (4) changing an attribute of an
object in the world state. Each WCA is modelled as an
Alloy predicate that expresses the post conditions for that
action. For example, the WCA predicate for changing the
AutoSoftCar’s acceleration is:

pred change_AutoSoftCar_accel
(postState: WS, car: AutoSoftCar, value: Int) {
car.(postState.acceleration) = value

}

18



on

waitAccelerate

t3: Accelerate+(o) / 

a1: AutoSoftCar.acceleration := acceleration()

off

waitSteer

t5: Steer+(o) / 

a1: AutoSoftCar.steerDirection := steerDirection()

acceleration

steering

t1: IgniteOn+(o) / 

a1: AutoSoftCar.ignition := on

waitDecelerate

t4 > t3: Decelerate+(o) / 

a1: AutoSoftCar.acceleration := deceleration()

deceleration

t2: IgniteOff+(o) / 

a1: AutoSoftCar.ignition := off

SPL AutoSoft

feature BDS

feature-machine main

Figure 2: A behaviour model for the Basic Driving
Service (BDS) feature.

The change AutoSoftCar accel predicate will be true even if
the acceleration attribute is changed to its previous value,
but this does not affect the analysis. The generated Al-
loy model may contain hundreds (or thousands) of WCA
predicates, but a majority of these may never be used and
the presence of unused predicates does not affect the perfor-
mance of the interaction analysis.

Every transition is translated into an Alloy predicate that is
a conjunction of the predicates of the WCAs that the transi-
tion executes. For example, transition t3 is translated into
a predicate that is true when the change AutoSoftCar accel
predicate is true. Note that only a transitions’ actions are
translated into Alloy, and not their enabling conditions (i.e.,
triggers, guard conditions). Thus our analysis can be per-
formed on early iterations of models that capture a feature’s
actions but not the conditions under which the actions are
performed.

3. INTERACTION ANALYSIS
The FORML defines an interaction as: two transitions from
different features simultaneously attempting to change the
world in inconsistent ways. For example, the actions of two
concurrently executing transitions may modify the same at-
tribute of the same object or may simultaneously modify
and remove an object. Those are obvious interactions. Less
obvious interactions include actions that together violate the
world-state constraints; or one transition whose actions re-
move one object, resulting in the removal of related objects,
one of which is being modified by a second transition. This
definition of interaction can be extended to transitions ex-
ecuting in different concurrent regions within the same fea-
ture, or interactions on a single transition.

Following the definition of an interaction in FORML, we
define an interaction in Alloy as: given some world state,
applying the conjunction of the actions of an individual tran-
sition (or pair of transitions) to that state never results in
a new, valid world state. This definition is used to create

1 assert transition1_transition2 {
2 distinct_valid_WSs implies
3 all wsPre:WS |
4 all [transition arguments] |
5 some wsPost : {ws:WS - wsPre | WSTC[wsPre, ws]} |
6 [transition invocations]
7 }

Figure 3: General structure of the Alloy assertion
for detecting interactions. A concrete example is
given in Figure 4.

the Alloy assertions that detect interactions. FORML2Alloy
creates such an assertion for every transition and every pair
of transitions that can execute concurrently (and is not an
intended interaction).

The structure of the generated assertions is given in Fig-
ure 3. The assertion states that within the world-state space
(line 2), starting from any world-state wsPre (line 3), and
for all possible parameter values of the transitions being ana-
lyzed (line 4), there exists a subsequent world-state wsPost
that can be arrived at by performing the transitions. Specif-
ically, the transition from wsPre to wsPost satisfies the
world-state-transition constraints (line 5), and wsPost sat-
isfies the conditions of all of the WCAs in the two transi-
tions (line 6). The placeholder [transition arguments] refers
to the WCA arguments of the two transitions. The place-
holder [transition invocations] refers to the invocations of
the transition predicates that were created for the transi-
tion(s) being tested.

An example of such an assertion is given in Figure 4. This
assertion tests transitions t3 in BDS (Figure 2) and t6 in
CC. Transition t6 in CC states:

CC{t6}: after(t) /
a1: AutoSoftCar.acceleration := CC_acceleration(),
a2: CC.goalAccel := CC_acceleration()
//goalAccel is an attribute of the CC feature

Line 4 of the assertion lists the parameters that are used to
instantiate the transitions with concrete objects and val-
ues (the parameters are named according to the feature
and action identifiers they are testing). Line 6 invokes the
transition predicates of t3 and t6 with wsPost and the
transitions’ parameters. Both transitions are attempting to
change the AutoSoftCar’s acceleration attribute. This re-
sults in an interaction when both transitions are enabled at
the same time, so the assertion is false. The visualization of
the counter-example is given in Section 4.

Assertions of the type given in Figure 3 are tested using the
check command in Alloy. The scope of the check com-
mand is the exact number of valid world-state instances,
based on the scopes of all the concepts in the world model.
This is due to the use of bounded quantification [5] in Al-
loy. Universal and existential quantifiers do not explore the
entire set of world states, only the subset that was speci-
fied by the scope. If the scope of the world states is set
lower than the number of possible world states, then the ex-
istential quantifier on line 4 of Figure 3 may fail to find a
future world state (wsPost) where the conjunction of the
transitions’ actions hold. This will cause the assertion to be
false even though an interaction did not occur. Likewise, if
the scope of the world states is set higher than the number

19



1 assert BDS_t3_AND_CC_t6 {
2 distinct_valid_WSs implies
3 all wsPre:WS |
4 all cc_a2_v1:Int,cc_a2_o1:CC,cc_a1_v1:Int,cc_a1_o1:AutoSoftCar,bds_a1_v1:Int,bds_a1_o1:AutoSoftCar |
5 some wsPost : {ws:WS - wsPre | WSTC[wsPre, ws]} |
6 CC_t6[wsPost,cc_a2_v1,cc_a2_o1,cc_a1_v1,cc_a1_o1] and BDS_t3[wsPost,bds_a1_v1,bds_a1_o1]
7 }

Figure 4: The assertion that tests for an interaction between the BDS{t3} and CC{t6} transitions.

of possible world states, then there are not enough distinct
world-state instances to satisfy the scope of the assertion
on line 3, causing the assertion to be incomplete. There-
fore, the scope of the assertion must be the exact number of
world-state instances for the analysis to be complete.

3.1 Scalability of Analysis
A traditional Alloy analysis of our model suffers from scala-
bility issues because Alloy regenerates the set of world-state
instances with every assertion that is checked. However,
the set of valid world states is constant with respect to the
scopes of the concepts in the world model. To take advan-
tage of this, we used a version of Alloy that has support for
manually specifying the instances of a model [14]. Using this
approach, the entire set of world-state instances needs to be
computed only once, and then can be input to the Alloy an-
alyzer and used in the check of every assertion. This speeds
up the analysis significantly.

Specifying the instances of an Alloy model is a fairly simple
process. In the Alloy visualizer, when viewing an instance
of a model, there is an option to view a textual version
of that model. We have created a second translator that
automatically converts from this Alloy-instance syntax into
the input language that is used to specify model instances for
the version of Alloy we are using. To automate the creation
of a model instance, the user (1) runs the Alloy analyzer
(run distinct_valid_WSs) to generate all distinct and
valid world states, (2) uses the textual output from the Alloy
visualizer as input to this second translator, (3) copies the
translator’s output into an instance block (see [14]) in the
Alloy model, and (4) checks the assertions using the new
instance block as the assertion scope.

A second scalability enhancement that we use are reduced
integer ranges. By default Alloy uses 16 integers to create
model instances. It is possible to reduce that number be-
cause the values of objects’ attributes are not important to
our analysis – all that matters is that each attribute has a
single value in a world state. The number of integers needed
is only two because an interaction occurs when two or more
unique values are applied to the same attribute. This en-
hancement reduces the number of possible model instances
by a factor of 8.

4. VISUALIZING INTERACTIONS
When an assertion is false, the Alloy visualizer displays a
counter-example that shows the world model just as the
interaction is about to occur. The objects that are being
changed are labelled by their variable names as they appear
in the assertion. This makes it easy to spot the objects that
are being changed despite the large number of objects and
relations that may be present. By examining the changed
objects, along with the knowledge of the assertions, it is

possible to determine the cause of the interaction. An in-
teraction can be resolved in several possible ways: changing
a transition’s actions, giving one transition priority over an-
other, specifying that a pair of features cannot be included
in the same SPL product, and so on. However, resolution of
interactions is outside the scope of this paper.

Figure 5 shows the counter-example that is produced when
the Alloy analyzer determines that the assertion in Figure 4
is false. To make the visualized model easier to read, we cre-
ated a custom theme that omits information (e.g., objects,
labels) not required to show the interaction.

The four objects that are parameters of the transitions’ ac-
tions are marked by their parameter names in the asser-
tion (line 4 of Figure 4). Labels cc_a2_o1 on object CC
and cc_a2_v1 on object 0 indicate that the goalAccel at-
tribute of CC is being set to 0 by transition t6 (t6’s defi-
nition was given in Section 3). Labels bds_a1_o1 on ob-
ject AutoSoftCar and bds_a1_v1 on object -1 indicate
that the acceleration attribute of AutoSoftCar is being
set to -1 by transition t3 in the BDS behaviour model (Fig-
ure 2). Lastly, labels cc_a1_o1 on object AutoSoftCar
and cc_a1_v1 on object 0 indicate that the acceleration at-
tribute of AutoSoftCar is being set to 0 by transition t6 in
the CC behaviour model. The latter two labels identify an
interaction when the two transitions change the acceleration
attribute of AutoSoftCar to different values.

5. CASE STUDY
We have performed a small case study on several automotive
features to demonstrate the utility of our approach. This
case study was performed on a PC running Linux 3.2.0-27
on a quad-core 3.6 Ghz processor with 8GB of memory.

The case study was performed using the world model in
Figure 1 as a base, that was extended with four additional
features (for a total of six features to be tested). Using the
lowest scope possible for the concepts, the number of dis-
tinct and valid world-state instances is 169. The composed
behaviour model for all six features contains 25 transitions.
The translator generates 25 assertions that check for inter-
actions within singleton transitions, and 161 transitions that
check pairs of transitions, for a total of 186 assertions.

Attempting to check a single assertion using the above scope,
but not the precomputed set of world-state instances, results
in an “Out of Memory exception” after several hours of ex-
ecution – even when the memory limit is set to unlimited.
In contrast, by specifying the set of world-state instances,
the average run time for a single assertion was 6.6 seconds.
And the total time to check all 186 assertions was only 20
minutes.

20



Figure 5: The visualized output of an interaction
between the BDS and CC features.

Nine feature interactions were detected by the analysis. All
of these were confirmed by manual inspection, and all of
them were caused by two transitions attempting to change
the same attribute on the same object. Five of the reported
interactions were false positives, that were due to not trans-
lating guard conditions on the transitions. The remaining
four reported interactions were unintended interactions that
were not handled during creation of the feature’s behaviour
models.

6. DISCUSSION
Our approach has several advantages. Firstly, the analysis
is complete within the scope of the world-state instances.
The analysis checks the actions of every pair of concurrent
transitions (and every single transition) in every valid world
state. If the actions of a pair of transitions (or within a
transition) conflict, an interaction will be reported. Because
we express interactions in a generalized manner we are able
to detect multiple types of interaction without having to ex-
press them explicitly. Another advantage of the form of our
assertions is that the analysis is open world – although the
assertions check pairs of transitions, other transitions could
be executing concurrently. Our results are open to being
composed with other transitions. Moreover, our approach
does not require frame conditions, which can become quite
large and affect the performance of the analyzer. Lastly, al-
though an interaction is an inconsistent world state and thus
cannot be visualized, our Alloy assertions fail if there is no
future state – leaving the preceding state and the interaction
actions as a counter-example that can be visualized.

Our approach can be used to analyze partial models of fea-
ture behaviour, where the actions on transitions have been
defined, but not the enabling conditions or order of execu-
tion. An expected but unproven advantage of this is the

ability to perform feature-interaction analysis earlier in the
development lifecycle when complete requirements models
have not yet been created.

Of course the Alloy analyzer can do more than just detect
feature interactions. Custom assertions could be added after
the translation to test other properties of the model. It
is also possible to use the analyzer to generate valid world
states in order to visualize the context in which the features
are executing.

On the downside, the analysis is not sound. Our analysis is
conservative and checks all pairs of potentially concurrent
transitions, without considering if they have mutually satis-
fiable enabling conditions. Thus, a pair of transitions may
be labelled as interacting when in fact they never execute to-
gether. This limitation could be reduced by considering the
transitions’ guard conditions such that the analysis reports
an interaction only if the enabling conditions are mutually
satisfiable. However, without performing a full reachability
analysis, it is not possible to completely resolve these false
positives. If soundness is required, then a more heavyweight
analysis method must be used – and complete models are
required.

Another limitation is that because the scopes of our asser-
tions are the set of all valid world states, the visualized out-
put includes every world-state instance (the relevant world-
state instance that shows the counter-example is labelled
with the name of the violated assertion). This causes the
visualizer to suffer from poor responsiveness when the model
is large. We believe the best way to resolve this limitation
is through the use of a theme file that displays only the
relevant world-state instance that visualizes the interaction.
However, this capability is currently not available in the Al-
loy visualizer.

7. RELATED WORK
Feature-interaction analysis of operational models:
There are many approaches to feature-interaction analysis
that apply to operational models of feature behaviour, such
as process algebra models (e.g., [17]), state-machine models
(e.g., [9, 4, 11]), and scenario models (e.g., [6]). Such ap-
proaches focus on different manifestations of feature interac-
tions in the models including non-determinism ([17]), dead-
lock ([11]), unreachable states ([4]), and inconsistent actions
([9]). Our work adapts the inconsistent-actions manifesta-
tion to partial FORML models of feature behaviour; that
is, models that contain only partial information on which
actions can execute concurrently. The remaining manifesta-
tions rely on more complete information regarding the exe-
cution of actions, and therefore cannot be detected in such
partial models. Furthermore, our analysis differs from most
existing approaches in that it accounts for intended feature
interactions, which are explictly specified in FORML, and
does not report them. The approach by Hall [9] also con-
siders intended interactions, but at the granularity of whole
features; in contrast, our approach determines whether or
not interactions are intended at the granularity of feature
transitions.

Feature-interaction analysis using Alloy: The Alloy
analyzer has been previously used for feature-interaction

21



analysis. Apel et al. [3] introduce an extension of Alloy,
called FeatureAlloy, in which an Alloy model is decomposed
into feature modules. In such models, feature interactions
manifest as inconsistencies between the correctness proper-
ties of different features, which are specified as Alloy asser-
tions in feature modules. In contrast, a feature’s correctness
properties are not explicitly specified in a FORML model;
instead, they are implicit in the postconditions of the fea-
ture’s actions, which are then translated into Alloy asser-
tions for consistency checking. Similar to our approach,
Layouni et al. [13] check for conflicts between pairs of ac-
tions of call-control features expressed in the APPEL lan-
guage, by translating the actions’ postconditions into Alloy
for consistency checking. However, our approach differs in
that we consider conflicts between more than two actions, we
account for intended interactions, and we improve the scal-
ability of checking multiple Alloy assertions by storing the
state-space under consideration as a partial instance. Scala-
bility is particularly important in our work since we operate
on state spaces that are potentially much larger than that
considered in [13].

Reasoning about partial models: Famelis et al. [8] have
developed a framework for expressing and reasoning over
partial models. However, the notion of a partial model in
their work differs from ours in that it refers to a model that
encodes uncertainty about the presence of its elements. Such
a partial model effectively specifies a family of models that
are alternative resolutions of the encoded uncertainty. The
reasoning over partial models in their work is to determines
whether a property holds for all, some, or none of the alter-
native resolutions. However, they have not explored their
reasoning in the context of the feature-interaction problem.

8. CONCLUSION
In this paper, we have presented an automated method for
translating FORML models into Alloy and detecting feature
interactions in the translated Alloy model. Our approach
can accommodate partial FORML models in which features
are expressed in terms of actions (without details about
when actions might be performed). We have addressed the
issue of providing visual feedback when an interaction leads
to an inconsistent world state. We have resolved some issues
of scalability by feeding the analyzer the set of world states
to consider.

We are planning to perform a case study of telephony fea-
tures [12] to assess the utility of this kind of static analysis.
The utility will be measured using two criteria:

1. The ratio of non-obvious versus obvious interactions
2. The ratio of true positives to false positives

If the case study shows that a large number of false positives
occur, then we plan to explore whether checking only pairs
of transitions whose enabling conditions are mutually sat-
isfiable (and including transitions’ guard conditions in the
Alloy model) reduces the number of false positives signifi-
cantly. In the worst case, it may be that interaction detec-
tion requires reachability analysis to be effective. However,
more complete analyses requires more complete models.

There is current work being done at the University of Water-
loo on incrementally constructing the total set of instances

of an Alloy model (e.g., from the model’s signature). Most
importantly, this work will automatically determine the ex-
act scope of the set of world states. Additionally, this will
generate the state space within Alloy, removing the need to
use the translator described in Section 3.1 to compute and
save the set of world states. We plan to wait until this work
is complete before we begin the case study.

9. REFERENCES
[1] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. On

challenges of model transformation from UML to
Alloy. Software System Models, 9(1), 2010.

[2] S. Apel and C. Kastner. An overview of
feature-oriented software development. Journal of
Object Technology, 2009.

[3] S. Apel, W. Scholz, C. Lengauer, and C. Kastner.
Detecting dependences and interactions in
feature-oriented design. In ISSRE, 2010.

[4] P. K. Au and J. M. Atlee. Evaluation of a state-based
model of feature interactions. In Feature Interactions
in Telecommunications and Software Systems, 1997.

[5] J. Barklund and J. Bevemyr. Prolog with arrays and
bounded quantifications. Logic Programming and
Automated Reasoning, 1993.

[6] J. Blom. Formalisation of requirements with emphasis
on feature interaction detection. In Feature
Interactions in Telecommunications and Software
Systems, 1997.

[7] J. Cordy, T. Dean, A. Malton, and K. Schneider.
Source transformation in software engineering using
the TXL transformation system. Journal of
Information and Software Technology, 1985.

[8] M. Famelis, R. Salay, and M. Chechik. Partial models:
Towards modeling and reasoning with uncertainty. In
ICSE, 2012.

[9] R. J. Hall. Feature combination and interaction
detection via foreground/background models. In
Feature Interactions in Telecommunications and
Software Systems, 1998.

[10] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. The MIT Press, 2012.

[11] A. Khoumsi. Detection and resolution of interactions
between services of telephone networks. In Feature
Interactions in Telecommunications and Software
Systems, 1997.

[12] M. Kolberg, E. H. Magill, D. Marples, and
S. Reiff-Marganiec. Results of the second feature
interaction contest. In FIW, 2000.

[13] A. F. Layouni, L. Logrippo, and K. J. Turner. Conflict
detection in call control using first-order logic model
checking. In ICFI, 2007.

[14] V. Montaghami and D. Rayside. Extending Alloy with
partial instances. In ABZ, 2012.

[15] OMG. Documents associated with the UML version
2.4.1. Technical report, 2011.

[16] P. Shaker, J. M. Atlee, and S. Wang. A
feature-oriented requirements modelling language. In
To appear in Requirements Engineering 2012, 2012.

[17] M. Thomas. Modelling and analysing user views of
telecommunications services. In Feature Interactions
in Telecommunications and Software Systems, 1997.

22


