
Change Propagation Due to Uncertainty Change

Rick Salay, Jan Gorzny and Marsha Chechik

Department of Computer Science, University of Toronto, Toronto, Canada
{rsalay,jgorzny,chechik}@cs.toronto.edu

Abstract. Uncertainty is ubiquitous in software engineering; however, it has
been typically handled in adhoc and informal ways within software models. Au-
tomated change propagation is recognized as a key tool for managing the acci-
dental complexity that comes with multiple interrelated models. In this paper, we
address change propagation in the context of model uncertainty and consider the
case where changes in the level of uncertainty in a model can be propagated to
related models. We define such uncertainty change propagation using our ear-
lier formalization and develop automated propagation algorithms using an SMT
solver. A preliminary evaluation shows that the approach is feasible.

1 Introduction

Uncertainty is ubiquitous in software engineering. It has been studied in different con-
texts including requirements engineering [?], software processes [?] and adaptive sys-
tems [?]. An area that has not received much attention is the occurrence of uncertainty in
software models. Model uncertainty can be the result of incomplete information about
the problem domain [?], alternative design possibilities [?], stakeholder conflicts [?],
etc.

Despite its importance, uncertainty is typically not treated in a first-class way in
modeling languages and as a result, its treatment is adhoc, e.g., including informal notes
in the model. To illustrate what we mean by model uncertainty, consider Fig. 1 which
shows a UML class and sequence diagram that are part of a hypothetical automotive
design model that focuses on the control of the power windows. The sequence diagram
shows a scenario in which a security threat is detected and the car responds by closing
the windows. However, the modelers are uncertain about various facets of the design,
and their points of uncertainty are indicated using the notes attached to the model el-
ements. The top note in the sequence diagram indicates that they are not sure whether
to keep the threat detection functionality separate from the car or to put it into the car.
The bottom note expresses uncertainty about whether the windows should be disabled
after being closed. A corresponding note can be found for the disable() operation in
the class diagram since if the message is never sent, the operation may not be needed
either. Finally, the other note in the class diagram shows that other operations may be
needed.

Informal approaches such as the one we have described are adequate for capturing
uncertainty information as documentation but they do not lend themselves to automa-
tion and mechanisms such as change propagation. To help address this problem, in pre-
vious work we have proposed a language-independent approach for expressing model
uncertainty using model annotations with formal semantics [?].

EX2

EX1
Car:ControllerMon1:Monitor

Not sure whether to keep the monitor

separate from the controller.

Not sure we want

to disable.

Driver:PowerWindow

threatResponse()

close()

disable()

Monitor Controller

threatResponse()

PowerWindow

open()

close()

disable()

Not sure what other

operations. Not sure we need

disable() operation.

Fig. 1. A pair of related models containing uncertainty.

The change propagation problem [?] has been defined as follows: given a set of
primary changes that have been made to software, what additional, secondary, changes
are needed to maintain consistency within the system? Change propagation has been
proposed as a mechanism to help manage and automate model evolution. Existing ap-
proaches to change propagation focus exclusively on model content changes (e.g., [?],
[?],[?]); however, other aspects of a model may be subject to change as well: e.g.,
comprehensibility, completeness, etc. Model uncertainty is one such aspect. Changes
that increase or decrease the level of uncertainty as the model evolves can force fur-
ther model changes, both within the same model and across different related models –
thus, uncertainty change is another context in which an automated change propagation
mechanism could be used.

The key contribution of this paper is an automated approach to uncertainty change
propagation within models. More specifically, first we identify and distinguish the prob-
lem of model uncertainty change from model content change. Second, we define the
conditions for uncertainty reducing and uncertainty increasing change propagation, in-
dependently of how the uncertainty is expressed. Third, we instantiate these conditions
for our formal annotation method for expressing uncertainty and define generic algo-
rithms and tooling for computing uncertainty change propagations parameterized by a
modeling language.

The remainder of the paper is organized as follows. In Sec. 2, we develop and il-
lustrate a general approach for understanding uncertainty change and its propagation.
In Sec. 3, we review the foundations of our formal annotation method for expressing
model uncertainty and in Sec. 4, we apply the uncertainty change approach from Sec. 2
to this annotation method. In Sec. 5, the algorithms for uncertainty change propagation
are described. In Sec. 6, they are evaluated by varying the key problem characteristics
with randomly generated models. We discuss related work in Sec. 7 and make conclud-
ing remarks in Sec. 8.

2 Uncertainty Change Propagation

In this section, we develop the concept of uncertainty change propagation.

Meaning of Uncertainty. Uncertainty can be expressed as a set of possibilities. We can
apply this approach to expressing uncertainty within a model by saying that it corre-
sponds to the set of possible models, or concretizations, that are admissible given the
uncertainty. A natural way to define this set is to indicate points of uncertainty within a

2

model. Although we can do so using informal notes, as in the models EX1 and EX2 of
Fig. 1 (this example was described in the introduction), we present a precise, formal ap-
proach in Sec. 3. A point of uncertainty can be viewed as a constraint whose satisfaction
we are unsure about, so that not all of the concretizations satisfy it. For example, the
note “not sure we need the operation disable()” corresponds to the constraint “class
PowerWindow has the operation disable()” which may not hold in all possible models
corresponding to EX1. The points of uncertainty of model EX1 in Fig. 1 suggest that the
set of concretizations of EX1, denoted by [EX1], contains all class diagrams that extend
EX1 by adding zero or more operations to classes Controller and/or PowerWindow
and may omit the operation disable(). Similarly, the notes attached to EX2 are its
points of uncertainty, and they suggest that [EX2] contains the variants in which Mon1

and Car are merged or distinct as well as those in which the message disable() is
omitted.

Uncertainty Change. A model change typically consists of additions, deletions and
changes to the elements of the model. When we consider a model with uncertainty, an
additional dimension of change becomes possible: the level of uncertainty may change.
For example, replacing the name of the object Mon1 to MyMonitor in EX2 changes
the model content but does not affect the uncertainty. However, removing the note on
the message disable() reduces the uncertainty in the model, because we no longer
consider concretizations that omit this message, but does not change the content of the
model. Another way to change uncertainty is to increase it. For example, adding a note
to say that we are not sure we need the close() message increases uncertainty without
changing the content of the model.

These examples suggest that an uncertainty reducing (increasing) change to a model
corresponds to reducing (increasing) the number of points of uncertainty. However,
when the constraints represented by points of uncertainty depend on each other, a
change at one point of uncertainty can force a corresponding change at other points
of uncertainty, both within the same model and in related models. We call this process
uncertainty change propagation. For example, suppose that EX1 and EX2 are subject to
the following well-formedness constraints:

wff1 Every message in a sequence diagram must begin on a lifeline.
wff2 Every message in a sequence diagram must correspond to an operation of the

message target object’s class.

Assume that we perform an uncertainty reducing change in EX2, denoted by EX2 →
EX2′. Specifically, we remove the note attached to the message disable() (i.e., we
become sure that disable() occurs), resulting in the model EX2′. This message is con-
tained in every concretization of EX2′, and, by wff2, the only well-formed concretiza-
tions of EX1 are those containing the operation disable(), i.e., the presence of this
operation is forced by the change to EX2 and the constraint wff2. However, now the
note attached to the operation disable() no longer describes a point of uncertainty
because there are no concretizations that omit this operation. To repair this violation
without undoing the original change in EX2, we propagate the change in EX1, denoted
by EX1 99K EX1′, by removing this note. Thus, dependencies between points of uncer-

3

a1 a2

b

Fig. 2. Example used to show non-uniqueness of uncertainty increasing change propagation.

tainty may mean that the removal of some may force the removal of others. This process
is called uncertainty change propagation due to uncertainty reduction.

Now assume we make an uncertainty increasing change, EX2→ EX2′, for the model
EX2 in Fig. 1. The change adds a point of uncertainty as a note saying that we are not
sure whether Mon1 is needed. The well-formedness constraint wff1 implies that any
concretization that omits Mon1 must also omit the message threatResponse(); how-
ever, this is not possible because there is no uncertainty indicated about the presence
of this message. That is, unless the presence of this message is also made uncertain,
wff1 “invalidates” our newly added point of uncertainty. In order to repair this viola-
tion and retain the new point of uncertainty, we make a further, propagated, change,
EX2′ 99K EX2′′, by adding a note to the message threatResponse() indicating that
its presence is now uncertain. Thus, when an added point of uncertainty is invalidated
by dependencies on existing constraints (e.g., well-formedness), we may need to relax
these constraints by adding (a minimal set of) further points of uncertainty. This process
is called uncertainty change propagation due to uncertainty increase.

Unlike the case of uncertainty reducing change propagation, here the required prop-
agated change may not be unique, i.e., there may be multiple suitable minimal sets of
uncertainty points that can be added and user input is required to decide among these.
For example, consider the directed graph in Fig. 2 and let one of the well-formedness
constraints for this graph be “if there is a path between two nodes then there is a di-
rect link between them”. Assume we add a point of uncertainty to indicate that we are
unsure whether edge b exists. The well-formedness constraint forces this edge to exist
due to the presence of the path a1a2, and so this new point of uncertainty is invalidated.
This can be repaired minimally in two distinct ways: saying that we are uncertain either
about the existence of edge a1 or edge a2, requiring a user decision.

In the next two sections, we instantiate these concepts for a particular type of model
with uncertainty called MAVO.

3 Background

In this section, we briefly review the concepts of a formal approach, introduced in [?],
for defining a model with uncertainty called MAVO. A MAVO model is a conventional
model whose elements are marked with special annotations representing points of un-
certainty.

Definition 1 A MAVO modelM consists of a base model, denoted bs(M), and a set of
annotations on the base model. Let T be the metamodel of bs(M). Then, [M] denotes
the set of T models called the concretizations of M . M is called consistent iff [M] 6= ∅.

For example, Fig. 3(a) shows the uncertainty expressed using notes in Fig. 1 via MAVO
annotations. The base model bs(EX1) of model EX1 is the class diagram that remains
when the annotations are stripped away.

MAVO provides four types of annotations, each adding support for a different type
of uncertainty in a model: Annotating an element with M indicates that we are unsure

4

(a)

EX2

EX1 Monitor Controller

threatResponse()

(MS)otherCOp()

PowerWindow

open()

close()

(M)disable()

(MS)otherPOp()

Car:Controller(V)Mon1:Monitor Driver:PowerWindow

threatResponse()

close()

(M)disable()

(b)

Class

Operation

PropertyownedAttribute
*

1*

superClass

0..1 ownedOperation

*
1

Fig. 3. (a) The models from Fig. 1 expressed using MAVO annotations. (b) A simplified meta-
model of the UML class diagram language.

about whether it should exist in the model; otherwise, the element does exist. Thus, in
EX1, the M-annotation on the operation disable() indicates that it may or may not exist
in a concretization. Annotating an element with S indicates that we are unsure whether
it should actually be a collection of elements; otherwise, it is just one element. This is
illustrated by the S-annotation on operation otherCOp() in EX1. This annotation repre-
sents a set of operations in a concretization. The fact that it also has an M annotation
means that this set could be empty. Annotating an element with V indicates that we are
unsure about whether it should actually be merged with other elements; otherwise, it is
distinct. Thus, we use the V-annotated object Mon1 to consider concretizations in which
it is merged with other objects such as Car. Finally, annotating the entire model with
INC indicates that we are unsure about whether it is complete. For our simple example
in Fig. 3(a), both models are assumed to be complete, and so we omit this annotation.

Formalizing MAVO annotations. A central benefit of using MAVO annotations is that
they have formal semantics and thus, the set of concretizations for any MAVO model is
precisely defined. In this section, we describe this semantics.

A metamodel represents a set of models and can be expressed as a First Order Logic
(FOL) theory.

Definition 2 (Metamodel) A metamodel is an FOL theory T = 〈Σ,Φ〉, where Σ is
the signature with sorts and predicates representing the element types, and Φ is a set
of sentences representing the well-formedness constraints. The models that conform to
T are the finite FO Σ-structures that satisfy Φ according to the usual FO satisfaction
relation. We denote the set of models with metamodel T by Mod(T).

The simple class diagram metamodel in Fig. 3(b) fits this definition if we interpret boxes
as sorts and edges as predicates comprising ΣCD (where CD stands for “class diagram”)
and take the multiplicity constraints (translated to FOL) as comprising ΦCD.

Like a metamodel, a MAVO model represents a set of models (i.e., its concretiza-
tions) and thus can also be expressed as an FOL theory. Specifically, for a MAVO model
M , we construct a theory FO(M) s.t. Mod(FO(M)) = [M]. We proceed as follows.
(1) Let B = bs(M) be the base model of a MAVO model M . We define a new MAVO
modelMB which hasB as its base model and its sole concretization, i.e., bs(MB) = B
and [MB] = {B}. We call MB the ground model of M . (2) To construct the FOL en-

5

ΣB1 has unary predicates Ct(Class), TR(Operation)), . . . ,
and binary predicates CtOwnsTR(Class, Operation), . . .

ΦB1 contains the following sentences:
(Complete) (∀x : Class · Ct(x) ∨ Mn(x) ∨ PW(x))∧

(∀x : Class, y : Operation · ownedOperation(x, y)⇒ (CtOwnsTR(x, y) ∨ . . .)) ∧ . . .
Ct:

(ExistsCt) ∃x : Class · Ct(x)
(UniqueCt) ∀x, x′ : Class · Ct(x) ∧ Ct(x′)⇒ x = x′

(DistinctCt−Mn) ∀x : Class · Ct(x)⇒ ¬Mn(x)
(DistinctCt−PW) ∀x : Class · Ct(x)⇒ ¬PW(x)

similarly for all other element and relation predicates

Fig. 4. The FO encoding of MB1.

coding of MB , FO(MB), we extend T to include a unary predicate for each element
in B and a binary predicate for each relation instance between elements in B. Then,
we add constraints to ensure that the only first order structure that satisfies the resulting
theory is B itself. (3) We construct FO(M) from FO(MB) by removing constraints
corresponding to the annotations in M . This constraint relaxation allows more con-
cretizations and thus represents increasing uncertainty. For example, if an element e in
M is annotated with S then the constraint that forces e to occur at most once in every
concretization is removed.

We illustrate the above construction using the MAVO class diagram EX1 in Fig. 3(a).
(1) Let B1 = bs(EX1) be the base model of EX1 and MB1 be the corresponding ground
MAVO model.

(2) We have: FO(MB1) = 〈ΣCD ∪ ΣB1, ΦCD ∪ ΦB1〉 (see Definition 2), where ΣB1

and ΦB1 are model B1-specific predicates and constraints, defined in Fig. 4. They extend
the signature and constraints for CD models described in Fig. 3(b). For conciseness, we
abbreviate element names in Fig. 4, e.g., Controller becomes Ct, threatResponse
becomes TR, etc. We refer to ΣB1 and ΦB1 as the MAVO predicates and constraints,
respectively.

Since FO(MB1) extends CD, the FO structures that satisfy FO(MB1) are the class
diagrams that satisfy the constraint set ΦB1 in Fig. 4. Assume N is such a class dia-
gram. The MAVO constraint Complete ensures that N contains no more elements or
relation instances than B1. Now consider the class Ct in B1. ExistsCt says that N con-
tains at least one class Ct, UniqueCt – that it contains no more than one class Ct, and the
clauses DistinctCt−∗ – that the class Ct is different from all the other classes. Similar
MAVO constraints are given for all other elements and relation instances in EX1. These
constraints ensure that FO(MB1) has exactly one concretization and thus N = B1.

(3) Relaxing the MAVO constraints ΦB1 allows additional concretizations and repre-
sents a type of uncertainty indicated by an annotation. For example, if we use the INC
annotation to indicate that B1 is incomplete, we can express this by removing the Com-
plete clause from ΦB1 and thereby allow concretizations to be class diagrams that extend
B1. Similarly, expressing the effect of the M, S and V annotations for an element E
correspond to relaxing ΦB1 by removing ExistsE , UniqueE and DistinctE−∗ clauses,
respectively. For example, removing the DistinctCt−∗ clauses is equivalent to marking
the class Ct with V (i.e., Controller may or may not be distinct from another class).

6

Thus, for each pair (a, e) of model M , where a is a MAVO annotation and e is a
model element, let ϕ(a,e) be the corresponding MAVO constraint that is removed from
the FO encoding of M . For the above example, ϕ(V,Ct) = DistinctCt−∗.

4 Formalizing Uncertainty Change Propagation

In this section, we formalize the notion of uncertainty change propagation between
models with uncertainty expressed using MAVO. We then define algorithms for uncer-
tainty reducing/increasing change propagation based on this formalization.

As discussed in Sec. 3, the points of uncertainty in a MAVO model are expressed us-
ing annotations on the model elements. In Sec. 2, we argued that a point of uncertainty
corresponds to a constraint which we are not sure holds. That is, there must exist a con-
cretization for which it doesn’t hold, otherwise we would be certain about the constraint
and it couldn’t represent a point of uncertainty. Thus, a validity requirement for a point
of uncertainty is that there should be some concretization in which it does not hold.

In the FO encoding for a MAVO model, we attempt to guarantee this validity require-
ment by explicitly omitting the constraint ϕ(a,e) corresponding to each annotation a of
an element e. However, this may not always be sufficient since the constraint may still
be implied by others (e.g., well-formedness), making the annotation an invalid point
of uncertainty. When all annotations satisfy the validity requirement, we say that the
MAVO model is in reduced normal form (RNF).

Definition 3 (Reduced Normal Form (RNF)) LetM be a MAVO model withFO(M) =
〈Σ,Φ〉 and let ΦA be the set of MAVO constraints corresponding to the annotations in
M . M is in reduced normal form (RNF) iff ∀ϕ(a,e) ∈ ΦA · ¬(Φ⇒ ϕ(a,e)).

When a model is in RNF, the validity requirement holds for all of its annotations: if
the MAVO constraint ϕ(a,e) for an annotation a of an element e does not follow from Φ,
there must be a concretization that does not satisfy ϕ(a,e). We now use RNF as a way to
formally define the notion of uncertainty reducing and increasing change propagation
for MAVO models.

Definition 4 Let M and M ′ be MAVO models. M 99K M ′ is an uncertainty reducing
propagated change if [M] = [M ′], and M ′ is obtained by removing annotations so that
M ′ is in RNF.

Definition 5 LetM andM ′ be MAVO models.M 99KM ′ is an uncertainty increasing
propagated change if [M ′] ⊂ [M], and M ′ is obtained by adding a minimal number of
annotations to M so that M ′ is in RNF.

To illustrate the application of these definitions, we recast the uncertainty change
propagation examples of Sec. 2 in terms of MAVO annotations. To be able to express
cross-model propagation in the FO encoding, we treat both diagrams in Fig. 3(a) as part
of a single bigger model. We resolve naming conflicts by appending the model name to
the element name, e.g., disable_EX1. In the first example, we perform an uncertainty
reducing change EX2 → EX2′ by removing the M annotation attached to the message
disable() and thus ΦEX2′ contains the additional MAVO constraint Existsdisable_EX2.

7

Together, Existsdisable_EX2 and wff2 imply the constraint Existsdisable_EX1, forcing the
existence of the operation disable() in EX1. However, this operation has an M an-
notation on the operation disable(), so EX1 is not in RNF. We repair the problem by
performing a change propagation EX1 99K EX1′ (Definition 4), removing the annotation
on the operation disable().

In the second example, assume that an uncertainty increasing change EX2 → EX2′

is made by adding an M annotation to Mon1 to indicate that we are not sure whether
it exists. However, since the message threatResponse() has no M annotation, ΦEX2′

contains the constraint ExiststhreatResponse and together with wff1, this implies the con-
straint ExistsMon1. Thus, EX2′ is not in RNF. Definition 5 says that to repair this, we
should propagate the change, EX2′ 99K EX2′′, by adding a minimal set of annotations
that put EX2′′ into RNF. In this case, it is sufficient to add an M annotation to the
message threatResponse() so that the above implication with wff1 does not happen.
While this solution is unique and minimal, this is not the case in general (recall the
example in Fig. 2).

5 Uncertainty Change Propagation Algorithms

Definitions 4 and 5 provide a specification for uncertainty change propagation. We now
describe algorithms for these. Recall that MAVO constraints in a FO encoding of a
model M correspond to missing annotations in M , so adding an annotation a to an
element e in M is equivalent to removing the corresponding MAVO constraint ϕ(a,e)

from the encoding, and vice versa.

5.1 Uncertainty Reducing Change Propagation

Fig. 5(a) shows Algorithm URCP for computing the change propagation due to an un-
certainty reducing change. The objective of this algorithm is to put the input model
M with FO(M) = 〈Σ,Φ〉 into RNF (see Definition 3). The main loop in lines 3-16
achieves this by iterating through all annotations (a, e) of M . It then checks whether
Φ ⇒ ϕ(a,e), where ϕ(a,e) is the MAVO constraint corresponding to this annotation. If
so, the annotation can be removed.

First, a satisfiability check is made in line 4 to find a satisfying instance I of
(Φ ∪ {¬ϕ(a,e)}). If one is not found, it means that Φ ⇒ ϕ(a,e) and so the annota-
tion a for an element e in the output model M ′ can be removed (line 13). Otherwise, I
is used to find other annotations that can also be removed (lines 5-11). For each annota-
tion (a′, e′), we check whether I is also a counter-example to the corresponding MAVO
constraint ϕ(a′,e′). For example, if (a′, e′) is an M-annotation on some element e′, the
call NotExists(e′, I) checks whether e′ is missing in I . If so, then Φ 6⇒ ϕ(a′,e′), and the
annotation can be removed from further consideration (line 9). Conditions for annota-
tions S and V are checked similarly. The strategy of using a satisfying instance to more
quickly eliminate annotations is inspired by a similar strategy used for computing the
backbone of a propositional formula (i.e., the set of propositional variables that follow
from the formula) with a SAT solver [?].

Correctness. Originally,M ′ is equal toM (line 1). An annotation a is removed from
the element e in M ′ (line 13) only if the condition Φ∪ {¬ϕ(a,e)} is not satisfiable (line

8

(a)
Algorithm: URCP
Input: MAVO model M with FO encoding FO(M) = 〈Σ,Φ〉
Output: MAVO model M ′ satisfying Definition 4

1: M ′ ←M
2: A← Annotations(M)
3: for (a, e) ∈ A do
4: if SAT(〈Σ,Φ ∪ {¬ϕ(e,a)}〉, I) then

// I is a satisfying instance
5: for (a′, e′) ∈ A do
6: if (a′ is M and NotExists(e′, I))
7: or (a′ is S and NotUnique(e′, I))
8: or (a′ is V and NotDistinct(e′, I)) then
9: A← A \ {(a′, e′)}
10: endif
11: endfor
12: else
13: remove annotation a from e in M ′

14: endif
15: A← A \ {(a, e)}
16: endfor
17: return M ′

(b)
Algorithm: UICP
Input: MAVO model M with FO encoding

FO(M) = 〈Σ,ΦT ∪ ΦM 〉,
a subset New of Annotations(M)

identified as new
Output: MAVO model M ′ satisfying Definition 5

1: Φsoft ← ΦM
2: Φhard ← ΦT ∪ {¬ϕ(a,e)|(a, e) ∈ New}
3: if MAXSAT(Φsoft, Φhard, Φrelax) then
4: return M ′ ←M ∪ {(a, e)|ϕ(a,e)∈Φrelax}
5: else
6: return ERROR
7: endif

Fig. 5. Algorithms to compute the change propagation of MAVO model M 99K M ′: (a) due to an
uncertainty reducing change; (b) due to an uncertainty increasing change.

4). Furthermore, every annotation that passes this condition is removed from consider-
ation (setA) either on line 9 or line 15. Thus,M ′ is in RNF, and the algorithm correctly
implements Definition 4.

Complexity. A MAVO model restricted only to M annotations (a.k.a. a May model)
can be seen as equivalent to a propositional formula where the M-annotated elements
are the propositional variables [?]. In this case, the RNF corresponds to removing the
elements in the backbone of this formula. Thus, the complexity of Algorithm URCP
is at least that of computing the backbone of a propositional formula, which is NP-
hard [?]. Furthermore, all other computations in the algorithm are polynomial time, so
we can conclude that URCP is also NP-hard. Algorithm URCP uses a SAT solver (with
that complexity). Since the outer loop is bounded by the number of annotations nA, the
SAT solver is not called more than nA times.

5.2 Uncertainty Increasing Change Propagation

The algorithm utilizes a solver for the partial maximum satisfiability (MAXSAT) prob-
lem (e.g., see [?]). The partial MAXSAT problem takes a set of hard clauses ΦH and
a set of soft clauses ΦS and finds a maximal subset ΦS′ ⊆ ΦS such that ΦH ∪ ΦS′ is
satisfiable. Thus, a solution (which may not be unique) represents a minimal relaxation
of the soft constraints that with the hard constraints will allow satisfiability.

Fig. 5(b) gives an algorithm for computing the change propagation due to an uncer-
tainty increasing change using partial MAXSAT. The input is a MAVO model M with
FO(M) = 〈Σ,ΦT ∪ΦM 〉 and a subset New of annotations of M identified as new due
to an uncertainty increasing change. ΦT are the well-formedness rules for M from its
metamodel T and ΦM are the MAVO constraints for the annotations missing from M .

9

We assume that M was in RNF prior to adding annotations New but now may not be –
this assumption is used in the discussion about correctness below.

Since M is not necessarily in RNF, it may be that ΦT ∪ ΦM ⇒ ϕ(a,e) for some
annotations (a, e) ∈ New. Thus, according to Definition 5, we must add a minimal set
of annotations from M so that this implication no longer holds for any New annotation.
We accomplish this by using MAXSAT to minimally relax ΦM .

In line 1, the MAVO constraints ΦM are set as the soft constraints since our objec-
tive is to find a minimal set of these to relax. The hard constraints, set in line 2, consist
of the well-formedness rules and the negations of the MAVO constraints for the New
annotations. Line 3 makes the MAXSAT call, and the output M ′ is constructed in line
4 by adding the annotations corresponding to the relaxed clauses. If no possible relax-
ation exists, the algorithm ends in error (line 6). This means that some of the MAVO
constraints for new annotations are implied directly by the well-formedness constraints
and so removing some new annotations is unavoidable in order for M to be in RNF.

Correctness and complexity. Since MAXSAT is guaranteed to find a relaxation (if
one exists), the MAVO constraints for the annotations in New will not be implied by
FO(M ′). Furthermore since we assumed that M was already in RNF prior to adding
the new annotations, none of the MAVO constraints for the remaining annotations (i.e.,
other than the new annotations) will be implied by FO(M ′). Thus, M ′ is in RNF, and
the UICP correctly produces the result as specified by Definition 5.

UICP consists of single call to a partial MAXSAT algorithm and thus its complexity
is equivalent to MAXSAT. For example, the implementation reported in [?] calls a SAT
solver is called at most (3n− nA) + 1 times, where n is the number of elements in M
and nA is the number of annotations in M .

6 Experiments

We performed a series of experiments to investigate the following research questions
related to the scalability of automated uncertainty change propagation:

RQ1 How is uncertainty change propagation affected by how constrained the model
is?

RQ2 How is uncertainty change propagation affected by the level of uncertainty in the
model?

RQ1 helps us understand the impact of well-formedness constraints while RQ2 is re-
lated to the number of annotations.

Experimental Design. We conducted four experiments, to study each of RQ1 and RQ2
with uncertainty reducing or increasing change propagation. In our experiments, we
assumed that our models are untyped randomly generated graphs. This is a reasonable
simplification since typing information can be seen as a form of constraint. We dis-
cretized the space of random models into four size categories defined by the following
ranges in the number of elements: (0, 25], (25, 50], (50, 75], (75, 100] (the same cate-
gories have been used in experiments in [?]).

In the RQ1 experiments, we assumed a fixed graph density1 of 0.11. We also as-
sumed that a fixed percentage of model elements, 36%, are MAVO-annotated. Of the

1 Graph density is the ratio of the number of edges to the square of the number of nodes.

10

annotations, 48% were M, 33% were S and 43% were V (the numbers add up to greater
than 100% because some elements are multiply annotated). The values of these param-
eters correspond to the average percentages of the corresponding annotations that we
have observed in the existing case studies using MAVO [?,?].

To vary the degree to which the model is constrained, for each randomly generated
model we computed a set of constraints that guaranteed that k% of the annotations
would either be removed (for uncertainty reducing change propagation) or added (for
uncertainty increasing change propagation). We considered the values of k in the set
{0, 25, 50, 75, 100}.

To understand how the constraints for uncertainty reducing change propagation
were generated, assume that a randomly generated MAVO model has n annotations.
We first choose n′ = n ∗ k/100 of the annotations arbitrarily. Then we generate a new
well-formedness constraint ϕ0 ⇒ ϕ1 ⇒ . . . ⇒ ϕn′ , where ϕ0 is the MAVO constraint
for an arbitrarily chosen missing annotation and the remainder are the MAVO constraints
for the n′ annotations. Since ϕ0 is the MAVO constraint for a missing annotation, it must
therefore hold, and so all the remaining sentences are implied. This causes the uncer-
tainty reducing change propagation algorithm to remove the corresponding annotations.

For uncertainty increasing change propagation, assume that the randomly generated
MAVO model has n missing annotations. We first choose n′ = n∗k/100 of the missing
annotations arbitrarily. Then we create a new constraint (ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn′) ⇒
ϕ0, where ϕ0 is the MAVO constraint for an arbitrarily chosen new annotation and the
remaining are the MAVO constraints for the n′ annotations. Since these n′ annotations
are missing, all of the constraints ϕi, for 1 ≤ i ≤ n′, must hold. Furthermore, each
implies ϕ0. Thus, the uncertainty increasing change propagation algorithm is forced to
add all n′ annotations in order to achieve RNF.

In the RQ2 experiments, we used the same graph density (0.11) as for RQ1 but
varied the total percentage of annotations using values in the set {25, 50, 75, 100} 2

while keeping the same relative percentages of each annotation type as for RQ1. In
addition, we fixed how the model is constrained, at k = 50%.

Overall, for each RQ1 experiment, we produced 20 test configurations (four sizes
times five constraint levels). For each RQ2 experiment, we had 16 test configurations
(four sizes times four uncertainty levels). Each test configuration was run up to 20 times
– models were generated randomly until the average time of processing was within a
confidence interval of 0.7 or until 20 random models were sampled.

Implementation. We used the Z3 SMT solver3 for both algorithms. The built-in theory
of uninterpreted functions and support for quantifiers made it convenient for expressing
the MAVO FO encoding. In addition, Z3 provides an implementation of MAXSAT based
on Fu and Malik [?]. Z3 v.4.1 was used for URCP while Z3 v.3.2 was used for UICP
because v.4.1 had bugs in the MAXSAT implementation.

2 The case of 0% annotations is omitted because no propagation occurs.
3 http://research.microsoft.com/en-us/um/redmond/projects/z3/

11

(a)

(0,25]

(25,50]

(50,75]

(75,100]

0

200

400

600

800

1000

1200

0% 25% 50% 75% 100%

P
ro

p
ag

at
io

n
 T

im
e

 (
se

c)

Percentage of annotations changed by propagation.

Constrainedness vs. Time for each Model Size
(uncertainty reducing change propagation)

(b)

(0,25]

(25,50]

(50,75]

(75,100]

0

200

400

600

800

1000

1200

1400

0% 25% 50% 75% 100%

P
ro

p
ag

at
io

n
 T

im
e

 (
se

c)

Percentage of annotations changed by propagation.

Constrainedness vs. Time for each Model Size
(uncertainty increasing change propagation)

Fig. 6. RQ1 results for (a) uncertainty reducing change propagation, and (b) uncertainty increas-
ing change propagation experiments.

Each randomly generated model was generated in eCore4 and then translated to
SMTLib5 using Python as input to Z3. All tests were run on a laptop with an Intel Core
i7 2.8GHz processor and 8GB of RAM.

Results. Figs. 6 and 7 summarize the obtained results for the RQ1 and RQ2 experi-
ments, respectively. The RQ1 experiment for uncertainty reduction in Fig. 6(a) shows a
surprising result: the time does not seem to be significantly affected by how constrained
the model is. An analysis of the URCP algorithm in Fig. 5 suggests the reason for this.
Changing an annotation is much more expensive than not changing it because the for-
mer only happens when the SMT solver returns UNSAT (line 13) which requires it
to consider all concretizations. Thus, on the one hand, adding more constraints should
reduce the SMT solving time because it has fewer concretizations to consider. On the
other hand, our constraints are designed to increase the number of changes to annota-
tions, and so URCP is forced to perform the more expensive processing that offsets the
speed gain. The results for uncertainty increase in Fig. 6(b) are similar but slightly more
variable. In both uncertainty reducing and increasing cases, there seems to be consistent
(but small) dip in propagation time going from 0% to 25% constrainedness. This may
suggest that a small amount of constraint is optimal.

Both of the RQ2 experiments in Fig. 7 exhibit a similar linear increase in propaga-
tion time with increasing uncertainty. Adding annotations increases the number of con-
cretizations so an increasing propagation time is to be expected. The linear relationship
is a desirable outcome given that the number of concretizations increases exponentially
relative to the number of annotations.

In summary, although in all four experiments the propagation time increased ex-
ponentially with model size, as is expected when using a SMT solver, the time was
relatively unaffected by degree of constrainedness and increases linearly with the de-
gree of uncertainty. Both of these positive results point to the feasibility of tool support
for uncertainty change propagation.

Threats to validity. The use of randomly generated models in our experiments is a
threat to validity because they may not correctly reflect change propagation behaviour
on real models. Another threat to validity is our approach for generating constraints. We

4 http://www.eclipse.org/modeling/emf/?project=emf
5 http://www.smtlib.org/

12

(a)

(0,25]

(25,50]

(50,75]

(75,100]

0

200

400

600

800

1000

25% 50% 75% 100%

P
ro

p
ag

at
io

n
 T

im
e

(s
ec

)

Percentage of elements with annotations.

Uncertainty vs. Time for each Model Size
(uncertainty reducing change propagation)

(b)

(0,25]

(25,50]

(50,75]

(75,100]

0

200

400

600

800

1000

1200

25% 50% 75% 100%

P
ro

p
ag

at
io

n
 T

im
e

(s
ec

)

Percentage of elements with annotations.

Uncertainty vs. Time for each Model Size
(uncertainty increasing change propagation)

Fig. 7. RQ2 results for (a) uncertainty reducing change propagation, and (b) uncertainty increas-
ing change propagation experiments.

used a method that guarantees particular levels of propagation, but such constraints may
not correspond to the actual well-formedness constraints used in modeling languages.

In order to help mitigate the first threat, we tuned the parameters for generating
random MAVO models so that the graph density and the frequencies of annotations cor-
responded to those we have observed with MAVO models created by hand for different
case studies.

7 Related Work

In this section, we review approaches to conventional change propagation and discuss
their relation to our method for MAVO uncertainty change propagation.

Change propagation can be seen as finding a “repair” to reinstate model consis-
tency after a change has made it inconsistent. The difference between the conventional
change propagation studied in the literature, and MAVO uncertainty change propagation
is the nature of the consistency constraint used. In the former, these are usually well-
formedness rules, either within a model or in the traceability relation between models.
In the latter, the constraint is that the model be in RNF.

Many approaches [?,?,?,?,?] focus on attempting to formulate repair rules repre-
senting various change scenarios where specific repair actions are performed in re-
sponse to detected changes. Such rules may be expressed in a specialized constraint
language, such as Beanbag [?] or EVL [?], or using logic, such as Blanc et. al [?], triple
graph grammars [?], the xLinkit framework [?] or, more recently, Reder et. al. [?]. With
the exception of xLinkit and Reder, these approaches require that the repair rules be
created by hand, and thus are modeling-language specific. These approaches are in-
appropriate for use with MAVO as they go against the language-independent spirit of
MAVO. On the other hand, xLinkit automatically generates the repair rules from from
consistency constraints and thus is language-independent, although the constraints are
different from ours. [?] takes a similar approach but the rules organize the repairs into
trees to simplify user selection. In the future, we intend to investigate the feasibility of
automatically generating uncertainty repair rules for each language.

Another approach to conventional change propagation is to use a general constraint
solver to find possible repairs. For example, [?] expresses the consistency constraints
declaratively using Answer Set Programming (ASP) and then finds possible modifica-
tions to reinstate consistency using an ASP solver. Analysis of feature models often uses

13

constraint solvers as well, e.g., [?]. Feature models represent a set of products in a man-
ner similar to the MAVO model representation of a set of concretizations. Lopez [?] uses
a SAT solver on feature models to fix inconsistencies that allow feature configurations
which yield inconsistent products. Benavides [?] uses a solver for false optional feature
detection – finding cases in which a feature is marked as optional when the constraints
actually force it to occur in all products. This is similar to removing an M annotation
in a MAVO model as part of an RNF computation. Addressing S and V annotations in
addition to M , as we do in our work, extends this kind of analysis further.

Since our main focus in this paper is uncertainty change propagation, we consider
the work related to expressing model uncertainty to be out of scope; see [?] for a recent
survey.

8 Conclusion

The management of uncertainty and its negative impacts in software engineering is an
important problem. In this paper, we extend our earlier work on model uncertainty [?]
to address the issue of change propagation due to uncertainty change. We identified
two general cases of uncertainty change propagation for uncertainty reducing change
and for uncertainty increasing change. We then formally specified these cases and de-
fined algorithms for computing the propagation. Although the cases appear to be sym-
metric, the uncertainty reducing case produces a unique solution while the uncertainty
increasing case might not, requiring user interaction. Furthermore, their solutions re-
quire different algorithms. We implemented both algorithms on top of the Z3 SMT
solver and performed scalability experiments using randomly generated models. Our
experiments revealed that although change propagation time increases exponentially
with model size, as is expected with the use of SMT solvers, it was unaffected by how
constrained the model is and only increases linearly with the degree of uncertainty in
the model. These positive results suggest the feasibility of tool support for uncertainty
change propagation.

Our experiences with the current work suggest some interesting future directions.
The generality of SAT/SMT solving comes at a cost of potentially exponential be-
haviour, and we found this to be the case for our experiments involving randomly gen-
erated models. Of course, it is possible that “real” models avoid this bad behavior – this
has been reported to be the case with real feature models [?]. We intend to conduct stud-
ies with real MAVO models to investigate this hypothesis. The appendix describes some
promising preliminary results. Another direction to improve performance is to exploit
more efficient algorithms in specialized cases. For example, there may be classes of
well-formedness constraints for which we can automatically generate efficient change
propagation rules in a manner similar to the approach used by xLinkit for conventional
change propagation [?]. Finally, we intend to investigate how conventional change prop-
agation can be combined with uncertainty change propagation to provide a more com-
prehensive change propagation solution. This will be an important step toward a general
approach for managing model uncertainty across the software development lifecycle.

Acknowledgements. We thank Alessio Di Sandro, Vivien Suen, Michalis Famelis,
Pooya SaadatPanah and Nathan Robinson for their help with developing the model gen-

14

eration framework used in this paper. We would also like to thank Aws Albarghouthi
for his help with Z3.

9 APPENDIX

In this section, we describe an uncertainty change propagation case study using models
of the open source software project UMLet6. UMLet is a simple UML editor consisting
of a drawing canvas and a palette of shape templates. A drawing is created by copying
template shapes and then configuring them by filling in a textual markup that changes
their content and appearance. UMLet has an online issue log7. In this case study, we
focus on one particular defect referred to as Issue 10, concerning a problem with the
copy/paste behaviour: when a shape is copied (whether from the palette or canvas)
and then pasted, it does not appear on top of the “z-order”, i.e., the stacking order of
overlapping shapes. As a result, it is covered by other shapes. We first studied this
bug in [?] where our objective was to do property checking with models containing
uncertainty. In [?], we only considered May uncertainties. In this study, our purpose is
to analyze uncertainty change propagation, and we consider full MAVO.

We used the Borland TogetherJ tool8 to reverse engineer models in order to isolate
the problem and then made modifications to fix it. The paste functionality is invoked
by instantiating the Paste class and calling the execute operation. Fig. ?? shows a
fragment of the sequence diagram for the execute operation and a corresponding class
diagram describing both the problem and the fix. The loop construct iterates (using
index e) through the elements in the clipboard and adds them to the canvas represented
as pnl : DrawPanel. The problem occurs because the AddElement command object
does not set the z-order to 0. The initial version of the fix is to create a “positioner”
object pos responsible for moving the newly pasted item to the top. This is invoked by
calling its moveToTop operation which calls setComponentZOrder to actually move
the item and then notifies other objects.

There are several points of uncertainty in this fix. First, we annotate pos with V to
indicate that we are not sure whether it should be a new object or part of an existing ob-
ject. This also means that we are not sure what class pos is an instance of (V-annotated
placeholder class Positioner) and whether it needs to be constructed (the M-annotated
message new). Second, we are not sure how many notifications will be made and where
they will go. Hence, we have the MS-annotated message notificationsmess repre-

6 www.umlet.com
7 code.google.com/p/umlet/issues/list
8 www.borland.com/us/products/together/

15

senting an arbitrary set of messages which are sent to an MSV-annotated object L rep-
resenting an arbitrary set of objects that may include existing ones. These objects are
instances of a correspondingly annotated class Listeners with the annotated operation
notificationsop.

We now consider a series of uncertainty reductions and increases with the asso-
ciated propagated changes. These are summarized in Table ??. The well-formedness
constraints used for propagation are listed in Table ?? (wff1 and wff2 have been used
in Sec. 2 . Change (1) is an uncertainty-reducing change initiated when the modeler
decides that, to minimize performance impact, exactly one notification message should
be sent. However, she is still unclear exactly where it should be sent. Ensuring that this
message always exists (i.e., no M) forces both the object L (due to wff1) and the op-
eration notificationsop to exist (due to wff2) as well. In turn, these force the class
Listeners to exist (due to wff3, wff4).

Making message notificationsmess unique (i.e., no S) does not propagate fur-
ther because none of the constraints affect uniqueness of the object L or the operation
notificationsop. However, we no longer need multiple occurrences of these. We thus
apply change (2) (see Table ??), forcing them, as well as the class Listeners, to be
unique. Note that the annotations after L : refer to the instanceOf relation between L

and Listeners and it is made unique by propagation because a single object cannot be
an instance of more than one class (due to wff4).

Finally, change (3) is an uncertainty increasing change motivated by the realization
that it may be more efficient to incorporate the move to the top of the z-order directly
into the execute operation of the elem : AddElement command object. To express
this, we add an M-annotated SetComponentZOrderelem message (from elem) during
execute. Then we M-annotate class the Positioner to indicate that it is no longer
necessarily needed. This last annotation has the propagated effect of M-annotating all
of Positioner’s operations since they cannot exist if their class is removed (due to
wff3). Similarly, the instance of Positioner and its messages become M-annotated
(due to wff1, wff2 and wff4).

Table ?? shows the time to generate the change propagations shown in Table ??
using the tooling described in Sec.6 . In order to compare these times to the results
reported in Figs.6-7 , we classify them following the scheme used in the experiments.
An analysis of the abstract syntax of the models in Fig. ?? reveals that they have a
combined 39 elements and 17 annotations: 6 M annotations, 5 S annotations and 6
V annotations. This data implies that it falls into the (25, 50] size category and the
25% uncertainty category. Also, since (at most) 4 of the 17 annotations get changed in

16

ID Change Change Propagation
(1) (MSV)L : (MSV)Listeners 99K (SV)L : (SV)Listeners

(MS)notificationsmess→ notificationsmess (MS)notificationsop 99K (S)notificationsop
(MSV)Listeners 99K (SV)Listeners

(2) (SV)L : (SV)Listeners→ (V)L : (SV)Listeners
(S)notificationsop→ notificationsop (V)L : (SV)Listeners 99K (V)L : (V)Listeners
(SV)Listeners→ (V)Listeners

(3) moveToTopop 99K (M)moveToTopop
→ (M)setCompZOrderelem (V)pos 99K (MV)pos
(V)Positioner→ (MV)Positioner moveToTopmess 99K (M)moveToTopmess

setCompZOrderpos 99K (M)setCompZOrderpos
Table 1. Case study model changes and propagations.

Name Constraint
wff1 Every message begins from exactly one object.
wff2 Every message corresponds to exactly one operation of the class of the target object.
wff3 Every operation is in exactly one class.
wff4 Every object is an instance of exactly one class.

Table 2. Well-formedness constraints used in the uncertainty change case study.

Table ??, the constraindness level is 25%. None of points in Figs.6-7 correspond exactly
to this configuration, however, if we average the time for the 25% constrainedness point
for (25, 50] in Fig.6 (a) with the 25% uncertainty point for (25, 50] in Fig.7 (a), the
result is 44.5 seconds. Comparing this to the times for uncertainty reducing changes
(1) and (2) we see that these are faster than the time taken for random graphs. The
similar average for Fig. 6 (b) and Fig. 7 (b) yields a time of 47 seconds. Uncertainty
increasing change (3) is faster than this average as well. We conclude that the results of
case study using real models are consistently faster with the results of the experiments
using randomly generated models.

Change (1) (2) (3)
Prop. Time (sec) 7.14 6.69 9.068

Table 3. Change propagation times of case study changes from Table ?? using the tooling de-
scribed in Sec.6 .

17

loop

self:Paste e:GridElement (MSV)L:_____Listenerspnl:DrawPanel

(V) pos:Positioner

elem:AddElement

getX()

getY

new(e,x,y,zoom)

execute(handler)

(M) new

moveToTop(e)

setComponentZOrder(e,0)

(MS) notifications()

[GridElement e.this.entities]

Paste

execute()

GridElement

getX()

getY()

DrawPanel

setComponentZOrder()

AddElement

execute()

Positioner

(V)moveToTop()

_____Listeners

(MS) notifications()

CS1 (MSV)

(V)

(MSV)

CS2

execute()

Fig. 8. A fragment of a UML class diagram and sequence diagram reverse engineered from UM-
Let code and using MAVO annotations to show points of uncertainty in the fix to Issue 10.

18

