Exact Values for the ε-Ascent Chromatic Index of Complete Graphs

C. M. van Bommel * J. Gorzny
Department of Mathematics and Statistics
University of Victoria, P.O. Box 1700 STN CSC
Victoria, BC, Canada V8W 2Y2
{cvanbomm,jgorzny}@uvic.ca
July 16, 2014

Abstract
Following a problem introduced by Schurch [M. Schurch, On the Depression of Graphs, Doctoral Dissertation, University of Victoria, 2013], we find exact values of the minimum number of colours required to properly edge colour K_n, $n \geq 6$, using natural numbers, such that the length of a shortest maximal path of increasing edge labels is equal to three. This result improves the result of Breytenbach and Mynhardt [A. Breytenbach and C. M. Mynhardt, On the ε-Ascent Chromatic Index of Complete Graphs, Involve, to appear].

1 Introduction
An edge ordering of a graph $G = (V, E)$ is an injection $f : E \to \mathbb{Z}^+$, where \mathbb{Z}^+ is the set of positive integers. A path $v_1, e_1, \ldots, e_{k-1}, v_k$ (with $v_1 \neq v_k$) in G for which the edge ordering $f(e_1) < \cdots < f(e_{k-1})$ increases along its edge sequence is called an f-ascent; an f-ascent is maximal if it is not contained in a longer f-ascent. The flatness of f, denoted $h(f)$, is the length of a shortest maximal ascent. The depression $\varepsilon(G)$ of G is the smallest integer k such that any edge ordering f has a maximal f-ascent of length at most k.

An edge ordering for a graph G is also a proper edge colouring: no two adjacent edges have the same label. The minimum number of labels, or colours, in a proper edge colouring is called the edge chromatic number or the chromatic index $\chi'(G)$. The minimum number of colours in a proper

*Research supported by NSERC.
edge colouring c such that $h(c) = \varepsilon(G)$ is called the ε-ascent chromatic index of G and is denoted by $\chi_\varepsilon(G)$.

As shown in [3], $\varepsilon(K_n) = 3$ for all $n \geq 4$. This fact prompted Schurch [4, 5] to introduce the following problem, where $r(n)$ is the same as $\chi_\varepsilon(K_n)$:

Question 1. For $n \geq 4$, what is the smallest integer $r(n)$ for which there exists a proper edge colouring of K_n in colours $1, \ldots, r(n)$ such that a shortest maximal path of increasing edge labels has length three?

Schurch [4, 5] showed that $r(n) \leq 2n - 3$ for all $n \geq 4$, which allowed him to determine $r(n)$ for $n \in \{4, 5\}$ as well as bound the value of $r(6)$. In [1], Breytenbach and Mynhardt provided a lower bound for $r(n) = \chi_\varepsilon(K_n)$:

Theorem 2. If $n \geq 4$, then

$$\chi_\varepsilon(K_n) \geq \begin{cases} n & \text{if } n \equiv 0 \pmod{4} \\ n + 1 & \text{if } n \equiv 1, 2 \pmod{4} \\ n + 2 & \text{if } n \equiv 3 \pmod{4} \end{cases}.$$

Further, they improved the general upper bound to $r(n) \leq \left\lceil \frac{3n - 3}{2} \right\rceil$. For even n, they provided better bounds: in the case $n \equiv 2 \pmod{4}$ they show that $r(n) = n + 1$, and in the case $n \equiv 0 \pmod{4}$ they show that $n \leq r(n) \leq n + 1$. Using these bounds, they also achieve $r(7) = 9$.

Breytenbach and Mynhardt conclude with the following conjecture:

Conjecture 3. For all $n \geq 4$, $\chi_\varepsilon(K_n) = \chi'(K_n) + 2$.

Since it is well known (see, e.g. [2], Section 10.2) that $\chi'(K_{2n}) = 2n - 1$ and $\chi'(K_{2n+1}) = 2n + 1$, a colouring of K_8 that illustrates $\chi_\varepsilon(K_8) \leq 8$ is a counter-example to the conjecture, and similarly a colouring of K_9 that illustrates $\chi_\varepsilon(K_9) \leq 10$ is another. For K_8 such a colouring is contained in the proof for the case $n \equiv 0 \pmod{4}$ in Section 2.1, for K_9, such a colouring is provided in Appendix B as Figure 5; it was verified by computer that this colouring has flatness equal to three. Motivated by these counter-examples, we determine the exact values of χ_ε for all $n \geq 4$.

2 Improved Upper Bounds

For $n \geq 6$, we show the existence of proper edge colourings with flatness equal to three and with the number of colours equal to the lower bound on $\chi_\varepsilon(K_n)$ established by Breytenbach and Mynhardt [1], and thus complete the computation of the exact value of $\chi_\varepsilon(K_n)$ for all n. The value was determined exactly for $n \leq 5$ in [4, 5] and for $n = 7$ and $n \equiv 2 \pmod{4}$.
in [1]. We consider \(n \equiv 0 \pmod{4} \) in Section 2.1, \(n \equiv 1 \pmod{4} \) in Section 2.2, and \(n \equiv 3 \pmod{4} \) in Section 2.3. In each case, we make use of the following fact [1].

Fact 4. To prove that \(h(c) = 3 \), where \(c \) is a proper edge colouring of \(K_n \), it is sufficient to prove the following statement:

- **S:** For any \(y \in V(K_n) \) and edges \(e = xy \) and \(f = yz \) such that \(c(e) < c(f) \), there exists
 - (a) an edge \(tx, t \notin \{x, y, z\} \), such that \(c(tx) < c(e) \), or
 - (b) an edge \(tz, t \notin \{x, y, z\} \), such that \(c(tz) < c(f) \).

2.1 The case \(n \equiv 0 \pmod{4} \)

Say \(n = 4m, m \geq 2 \), and \(V(K_n) = \{v_0, \ldots, v_{4m-1}\} \). Let \(G \) and \(H \) be the subgraphs of \(K_n \) induced by \(\{v_0, \ldots, v_{2m-1}\} \) and \(\{v_{2m}, \ldots, v_{4m-1}\} \), respectively. Then \(G \cong H \cong K_{2m} \) and each of them is \((2m - 1)\)-edge colourable. We describe a colouring \(c \) of \(K_n \) in the colours \(1, \ldots, 4m \) as follows.

- In \(G \), let \(c \) be any proper edge colouring of \(K_{2m} \) in the \(2m - 1 \) colours \(\{1\} \cup \{m + 2, \ldots, 3m - 1\} \).
- In \(H \), let \(c \) be any proper edge colouring of \(K_{2m} \) in the \(2m - 1 \) colours \(\{4m\} \cup \{m + 2, \ldots, 3m - 1\} \).
- We still need to colour the edges of the complete bipartite graph \(F \cong K_{2m, 2m} \) induced by the edges \(v_iv_j, i \in \{0, \ldots, 2m - 1\}, j \in \{2m, \ldots, 4m - 1\} \). But \(\chi'(K_{2m, 2m}) = 2m \) and there are \(2m \) unused colours \(2, \ldots, m + 1 \) and \(3m, \ldots, 4m - 1 \). Colour the edges of \(F \) with these colours in such a way that the graph induced by the edges assigned the colours \(1, 2, 4m - 1, 4m \) is triangle free. This can be achieved by partitioning the vertices of \(K_n \) into sets \(X \) and \(Y \) such that each edge labelled with \(1, 2, 4m - 1, \) and \(4m \) has an end in \(X \) and an end in \(Y \), which is possible as \(m \geq 2 \). Then the graph induced by the edges assigned the colours \(1, 2, 4m - 1, 4m \) is bipartite, and hence triangle free.

As an example, a colouring of \(K_8 \) is given in Figure 1. It is clear that \(c \) is a proper edge colouring of \(K_{4m} \) in \(4m \) colours.

Theorem 5. For all \(m \geq 2 \), the colouring \(c \) of \(K_{4m} \) has flatness equal to three.

Proof. Let \(F, G, \) and \(H \) be the subgraphs of \(K_{4m} \) defined above and let \(e, f \in E(K_{4m}) \) be adjacent edges such that \(c(e) < c(f) \). By Fact 4, it is
Figure 1: Edge colouring c of K_8

sufficient to show $S(a)$ or $S(b)$ holds. Let $e = v_jv_i$ and $f = v_iv_k$. Observe at each vertex, every colour is used at an incident edge, except exactly one of 1 or $4m$ is used. Thus if $c(e) \geq 4$, at least one of 2, 3 is not used to colour edge v_jv_k, and thus v_j is adjacent to some vertex v_l, $l \neq k$, such that $c(v_jv_k) = c(e)$, so $S(a)$ holds. Similarly, if $c(f) \leq 4m - 3$, at least one of $4m - 2, 4m - 1$ is not used to colour edge v_kv_j, and thus v_k is adjacent to some vertex v_l, $l \neq j$, such that $c(v_kv_l) = c(f)$, so $S(b)$ holds. Thus we consider $c(e) \in \{1, 2, 3\}$ and $c(f) \in \{4m - 2, 4m - 1, 4m\}$.

Suppose $c(e) = 1$. By construction, $c(f) \neq 4m$. Thus $c(e) \in \{4m - 2, 4m - 1\}$, so $e \in E(G)$ and $f \in E(F)$. Thus there exists an edge v_kv_l such that $c(v_kv_l) = 4m$. As $j \neq l$, $S(b)$ holds. Similarly, if $c(f) = 4m$, $c(e) \in \{2, 3\}$, so $f \in E(H)$ and $e \in E(F)$. Thus there exists an edge v_kv_j such that $c(v_kv_j) = 1$. As $j \neq l$, $S(a)$ holds.

Now we consider $c(e) \in \{2, 3\}$ and $c(f) \in \{4m - 2, 4m - 1\}$, and thus $e, f \in E(F)$. If $c(e) = 3$, then there exists an edge $v_kv_j \in E(F)$ such that $c(v_kv_j) = 2$ and $l \neq k$ as F is bipartite. Thus $S(a)$ holds. Similarly, if $c(f) = 4m - 2$, then there exists an edge $v_kv_l \in E(F)$ such that $c(v_kv_l) = 4m - 1$ and $l \neq k$ as F is bipartite. Thus $S(b)$ holds.

Finally, we consider $c(e) = 2$ and $c(f) = 4m - 1$. If $v_i \in V(G)$, then there exists an edge $v_kv_l \in E(H)$ such that $c(v_kv_l) = 4m$ and $l \neq j$ by
construction, so $S(b)$ holds. If $v_i \in V(H)$, then there exists an edge $v_iv_j \in E(G)$ such that $c(v_iv_j) = 1$ and $i \neq k$ by construction, so $S(a)$ holds. □

Thus we conclude the following.

Corollary 6. For all $n \geq 8$ and $n \equiv 0 \pmod{4}$, $\chi_e(K_n) = n$.

2.2 The case $n \equiv 1 \pmod{4}$

Say $n = 4m + 1$, $m \geq 3$, and $V(K_n) = \{u_0, \ldots, u_{2m-1}, v_0, \ldots, v_{2m-1}, w\}$. Let G and H be the subgraphs of K_n induced by $\{u_0, \ldots, u_{2m-1}\}$ and $\{v_0, \ldots, v_{2m-1}\}$, respectively. Then $G \cong H \cong K_{2m}$ and each of them is $(2m-1)$-edge colourable. Let F be the subgraph of K_n induced by the edges u_iv_j, $0 \leq i, j \leq 2m-1$. Then $F \cong K_{2m,2m}$ and is $2m$-edge colourable. Let c be a colouring of $K_n - w$ with the following colour classes:

F: For $0 \leq k \leq 2m-1$, let $E^F_k = \{u_iv_{i+k} : 0 \leq i \leq 2m-1\}$, indices taken mod $2m$.

G and **H:** Let $\{a_j\}$, $0 \leq j \leq 2m-2$, be the sequence $2m-2$, $2m-4$, \ldots, 2, 1, 3, \ldots, $2m-1$. For $0 \leq k \leq 2m-2$, let $E^G_k = \{u_0u_{a_k}\} \cup \{u_{a_k-i}u_{a_{k+i}} : 1 \leq i \leq m-1\}$ and $E^H_k = \{v_0v_{a_k}\} \cup \{v_{a_{k-i}}v_{a_{k+i}} : 1 \leq i \leq m-1\}$, indices taken mod $2m-1$.

Later we will pair the colour classes of G and H to get exactly $4m-1$ colours. We form the colouring c^* of K_n as follows. Assume c uses the colours $1, \ldots, 2m, 2m+3, \ldots, 4m+2$. Define the path P as follows: if $m \equiv 1 \pmod{2}$, $P = u_0, u_2, \ldots, u_{2m-2}, v, v_1, u_1, v_3, u_3, u_{2m-1}, v_5, u_5, v_{m+1}, v_{m+2}, u_{m+2}, v_{m+4}, u_{m+4}, v_{m+6}, \ldots, v_{m-1}, u_{m+1}, v_2, u_m, v_4, \ldots, u_3, v_{m+1}, v_{m+3}, \ldots, v_{2m-2}, v_0, v_{2m-1}, v_{2m-3}, \ldots, v_{m+2}$, and if $m \equiv 0 \pmod{2}$, $P = v_1, u_{2m-1}, v_3, u_{2m-3}, \ldots, v_{m-1}, u_{m+1}, v_2, u_m, v_4, u_{m-3}, \ldots, v_m, u_1, u_2, v_4, \ldots, u_2, v_{2m-2}, v_{2m-2}, v_{2m-4}, \ldots, v_{m+1}, v_{2m-1}, v_{2m-3}, \ldots, v_{m+1}, w, u_0$. For small values of m, the path P is shown in Figure 2. For each edge xy of P, if xy occurs before w in the path, let $c^*(xw) = c(xy)$, otherwise, if xy occurs after w in the path, let $c^*(yw) = c(xy)$. Then if the edges on the path are enumerated, let $c^*(xy) = 2m+1$ if xy is an odd edge, otherwise let $c^*(xy) = 2m+2$ if xy is an even edge. Finally, if $e \in E(K_n - w)$ is not in P, let $c^*(e) = c(e)$.

For c^* to be a proper colouring of K_n, each edge of P must belong to a different colour class in c. We prove this statement in the following claim.

Claim 7. Each edge in P that does not have w as an endpoint belongs to a different colour class.

Proof. We consider each of the two paths separately.
Figure 2: The path P for small values of m
$m \equiv 1 \pmod{2}$: The first $m - 1$ edges are contained in G. The edge u_0u_2 is in colour class E_{m-1}^G and each edge of the form $u_{2j}u_{2(j+1)}$, $1 \leq j \leq m - 2$ is in colour class E_{2m-j-2}^G. The next two edges are incident with w. The following $2m$ edges are contained in F. Each edge of the form $v_{2j-1}v_{2m-2j+3}$, $1 \leq j \leq \frac{m+1}{2}$ is in the colour class E_{4j-4}^F, each edge of the form $u_{2m-2j+3}v_{2j+1}$, $1 \leq j \leq \frac{m-1}{2}$ is in the colour class E_{4j-2}^F, each edge of the form $u_{m-2j+4}v_{2j}$, $1 \leq j \leq \frac{m+1}{2}$ is in the colour class E_{4j+m-4}^F, and each edge of the from $v_{2j}u_{m-2j+2}$, $1 \leq j \leq \frac{m-1}{2}$ is in the colour class E_{4j+m-2}^F. The final $m - 1$ edges are contained in H. Each edge of the form $v_{m+2j-1}v_{m+2j+1}$, $1 \leq j \leq \frac{m-3}{2}$ is in the colour class $E_{2m-2j+3}^H$, the edge $v_{2m-2m}v_0$ is in the colour class E_0^H, the edge v_0v_{2m-1} is in the colour class E_{2m-2}^H, and each edge of the form $v_{2m-2j+1}v_{2m-2j-1}$, $1 \leq j \leq \frac{m-3}{2}$ is in the colour class E_{m-1-j}^H. No two edges taken from F belong to the same colour class as the first half are consecutive even numbered colour classes, and the second half are consecutive odd numbered colour classes, mod $2m$, starting with m. No two edges taken from G belong to the same colour class as $m - 1 = 2m - j - 2 \implies j = m - 1$. Finally, no two edges taken from H belong to the same colour class as $0 < \frac{m+1}{2}$, $m - 2 < m$, and $\frac{3m-5}{2} < 2m - 2$ for positive m.

$m \equiv 0 \pmod{2}$: The first $2m - 1$ edges are contained in F. Each edge of the form $v_{2j}v_{2m-2j+1}$, $1 \leq j \leq \frac{m}{2}$ is in the colour class E_{4j-2}^F, each edge of the form $u_{2m-2j+1}v_{2j+1}$, $1 \leq j \leq \frac{m-2}{2}$ is in the colour class E_{4j}^F, each edge of the form $u_{m-2j+3}v_{2j}$, $1 \leq j \leq \frac{m}{2}$ is in the colour class E_{4j-m-3}^F, and each edge of the form $v_{2j}u_{m-2j+1}$, $1 \leq j \leq \frac{m}{2}$ is in the colour class E_{4j-m-1}^F. The next $m - 1$ edges are contained in G. The edge u_1u_2 is in the colour class E_{2m-2}^G and each edge of the form $u_{2j}u_{2(j+1)}$, $1 \leq j \leq m - 2$ is in colour class E_{2m-j-2}^G. The following edge, $u_{2m-2}v_{2m-2}$ is contained in F and is in colour class E_0^F. The next $m - 1$ edges are contained in H. Each edge of the form $v_{2m-2j}v_{2m-2j-2}$, $1 \leq j \leq \frac{m-2}{2}$ is in the colour class E_{m+j-2}^H, the edge $v_{m+2}v_0$ is in the colour class E_{m-1-j}^H, the edge v_0v_{2m-1} is in the colour class E_{2m-2}^H, and each edge of the form $v_{2m-2j+1}v_{2m-2j-1}$, $1 \leq j \leq \frac{m-2}{2}$ is in the colour class E_{m-1-j}^H. The final two edges are incident with w.

No two edges taken from F belong to the same colour class as the first half are consecutive even numbered colour classes starting from 2, the second half are consecutive odd numbered colour classes, mod $2m$, starting with $1 - m \equiv m + 1$, and the final edge is in the colour class 0. No two edges taken from G belong to the same colour class as
\[2m - 2 = 2m - j - 2 \Rightarrow j = 0.\] Finally, no two edges taken from \(H\) belong to the same colour class as \(\frac{m - 2}{2} < \frac{m}{2}, \ m - 2 < m - 1,\) and \(\frac{3m - 8}{2} < 2m - 2\) for positive \(m.\)

Therefore, \(c^*\) is a proper colouring of \(K_n.\) It remains to show that there is a colouring \(c\) which, when extended to \(c^*,\) allows us to avoid maximal 2-ascents. We assign the colours to the colour classes in the following manner.

- Let \(E_{m-1}^G\) be assigned colour 1 and \(E_{m-1}^H\) be assigned colour \(4m + 2.\)

- If \(m \equiv 0, 1 \pmod{4},\) let \(E_0^F\) be assigned colour 2, \(E_1^F\) be assigned colour 3, \(E_2^F\) be assigned colour 4, and \(E_3^F\) be assigned colour \(4m + 1.\)

If \(m \equiv 2, 3 \pmod{4},\) let \(E_{2m-1}^F\) be assigned colour 2, \(E_0^F\) be assigned colour 3, \(E_1^F\) be assigned colour 4, and \(E_2^F\) be assigned colour \(4m + 1.\)

As a result, when \(c\) is extended to \(c^*,\) the edges incident with \(w\) assigned 2 and 3 have their other endpoint in \(V(G),\) and the edges incident with \(w\) assigned 4 and \(4m + 1\) have their other endpoint in \(V(H).\) Assign the remaining colour classes of \(F\) from the colours \(\{4, \ldots, m + 1, 3m + 2, \ldots, 4m - 1\}.\)

- For the remaining colour classes of \(G\) and \(H,\) assign from the colours \(\{m + 2, \ldots, 2m, 2m + 3, \ldots, 3m + 1\}\) such that each colour class with an edge in \(P\) is assigned a different colour.

As an example, a colouring of \(K_{13}\) is given in Figure 4 in Appendix A. Note that this proof cannot be applied to \(K_9.\) In place of a proof of this small case, we used a computer to search\(^1\) for a 10-colouring of \(K_9\) with flatness three, and a result is shown in Figure 5 in Appendix B.

Theorem 8. For all \(m \geq 3,\) the colouring \(c^*\) of \(K_{4m+1}\) has flatness equal to three.

Proof. Let \(F, G,\) and \(H\) be the subgraphs of \(K_{4m+1}\) defined above, let \(W\) be the subgraph induced by the edges incident with \(w,\) and let \(e, f \in E(K_{4m+1})\) be adjacent edges such that \(c^*(e) < c^*(f).\) By Fact 4, it is sufficient to show \(S(a)\) or \(S(b)\) holds. Let \(e = xy\) and \(f = yz.\) Observe that at each vertex, exactly two colours are not incident with it, at least one of which is either 1 or \(4m + 2.\) Thus if \(c^*(e) \geq 5,\) at least two of 2, 3, 4 are incident with \(x,\) and thus \(x\) is adjacent to some \(t \neq z\) such that \(c^*(tx) < c^*(e),\) so \(S(a)\) holds. Similarly, if \(c^*(f) \leq 4m - 2,\) at least two of \(4m - 1, 4m, 4m + 1\) are incident with \(z,\) and thus \(z\) is adjacent to some \(t \neq x\) such that \(c^*(f) < c^*(zt),\) so \(S(b)\) holds. Thus we consider \(c^*(e) \in \{1, 2, 3, 4\}\) and \(c^*(f) \in \{4m - 1, 4m, 4m + 1, 4m + 2\}.

\(^1\)The code is available at: http://www.math.uvic.ca/~jgorzny/ascent/
Suppose $c^*(e) = 1$. By construction, $c^*(f) \neq 4m + 2$. Thus $c^*(f) \in \{4m - 1, 4m, 4m + 1\}$, so $e \in E(G)$ and $f \in E(F) \cup E(W)$. If $f \in E(W)$, then $c^*(f) = 4m - 1$ and there exists an edge wt such that $c^*(wt) = 4m + 1$. Otherwise, $f \in E(F)$, and there exists an edge zt such that $c^*(zt) = 4m + 2$.

As $t \neq x$ in either case, $S(b)$ holds. Similarly, if $c^*(f) = 4m + 2$, $c^*(e) \in \{2, 3, 4\}$, so $f \in E(H)$ and $e \in E(F) \cup E(W)$. If $e \in E(W)$, then $c^*(e) = 4$, and there exists an edge wt such that $c^*(wt) = 2$, otherwise, $e \in E(F)$, and there exists an edge tx such that $c^*(tx) = 1$. As $t \neq z$ in either case, $S(a)$ holds.

Now we consider $c^*(e) \in \{2, 3, 4\}$ and $c^*(f) \in \{4m - 1, 4m, 4m + 1\}$, and thus $e, f \in E(F) \cup E(W)$. If $c^*(e) = 4$ and x is incident with both colours 2 and 3, it is clear that $S(a)$ holds. If x is incident with only one of the colours 2 and 3, then $x \in V(H)$. If $y = w$, then $c^*(yz) = 4m - 1$, and z is incident with at least one of the colours $4m, 4m + 1$. Therefore, at least one of these four colours is incident with x or z but not assigned to xz, so there exists some t such that either $t \neq z$ and $c^*(tx) < c^*(e)$ or $t \neq x$ and $c^*(f) < c^*(zt)$, so either $S(a)$ or $S(b)$ holds. If $y \neq w$ then $y \in V(G)$ and $z \in V(H) \cup \{w\}$. Thus there exists an edge $tx \in E(F)$ such that $c^*(tx) \in \{2, 3\}$ and $t \neq z$ as $t \in V(G)$; hence $S(a)$ holds. Similarly, if $c^*(f) = 4m - 1$, then clearly $S(b)$ holds unless z is incident with only one of the colours $4m, 4m + 1$, in which case $z \in V(G)$. We have shown $S(a)$ or $S(b)$ holds if $c^*(e) = 4$, thus $y \neq w$. Hence, $y \in V(H)$ and $x \in V(G)$, and there exists an edge $zt \in E(F)$ such that $c^*(zt) \in \{4m, 4m + 1\}$ and $t \neq x$ as $t \in V(H)$ so $S(b)$ holds.

We now consider $c^*(e) \in \{2, 3\}$ and $c^*(f) \in \{4m, 4m + 1\}$. If $y = w$, then $x \in V(G)$, $z \in V(H)$, and there is an edge $tx \in E(G)$ such that $c^*(tx) = 1$ and as $t \neq z$, $S(a)$ holds. If $x = w$, then $y \in V(G)$, $z \in V(H)$, and there is an edge $zt \in E(H)$ such that $c^*(zt) = 4m + 2$ and as $t \neq x$, $S(b)$ holds. Similarly, if $z = w$, then $y \in V(H)$, $x \in V(G)$, and there is an edge $tx \in E(G)$ such that $c^*(tx) = 1$ and as $t \neq z$, $S(a)$ holds.

Otherwise, $e, f \in E(F)$. Suppose $c^*(e) = 2$. If $x, z \in V(G)$, let $x = u_i$. Either $z = u_{i-2}$ or $z = u_{i-3}$, and as either $c^*(u_{i-1}u_i) = 1$ or $c^*(u_{i+1}u_i) = 1$, then $S(a)$ holds. Otherwise, if $x, z \in V(H)$, let $z = v_i$. Either $x = v_{i-2}$ or $x = v_{i-3}$, and as either $c^*(v_{i-1}v_i) = 4m + 2$ or $c^*(v_{i+1}v_i) = 4m + 2$, then $S(b)$ holds. Similarly, if $c^*(f) = 4m + 1$, either $x, z \in V(G)$ and $S(a)$ holds or $x, z \in V(H)$ and $S(b)$ holds.

Finally, we consider $c^*(e) = 3$ and $c^*(f) = 4m$. If $x, z \in V(G)$, then there is an edge tx such that $c^*(tx) = 2$ and $t \neq z$, so $S(a)$ holds. Otherwise, $x, z \in V(H)$, and there is an edge zt such that $c^*(zt) = 4m + 1$ and $t \neq x$, so $S(b)$ holds. □

Thus we conclude the following.

Corollary 9. For all $n \geq 13$ and $n \equiv 1 \pmod{4}$, $\chi_\varepsilon(K_n) = n + 1$.

2.3 The case \(n \equiv 3 \pmod{4} \)

Say \(n = 4m + 3, \ m \geq 1, \) and \(V(K_n) = \{v_0, \ldots, v_{4m+2}\}. \) Let \(G \) and \(H \) be the subgraphs of \(K_n \) induced by \(\{v_0, \ldots, v_{2m}\} \) and \(\{v_{2m+1}, \ldots, v_{4m+2}\} \), respectively. Then \(G \cong K_{2m+1}, \ H \cong K_{2m+2}, \) and each of them is \((2m+1)\)-edge colourable. We describe a colouring \(c \) of \(K_n \) in the colours \(1, \ldots, 4m+5 \) as follows.

- In \(G, \) let \(c \) be any proper edge colouring of \(K_{2m+1} \) in the \(2m+1 \) colours \(\{1, 2\} \cup \{m+4, \ldots, 3m+2\}. \)
- In \(H, \) let \(c \) be any proper edge colouring of \(K_{2m+2} \) in the \(2m+1 \) colours \(\{4m+4, 4m+5\} \cup \{m+4, \ldots, 3m+2\}. \)
- We still need to colour the edges of the complete bipartite graph \(F \cong K_{2m+1,2m+2} \) induced by the edges \(v_iv_j, \ i \in \{0, \ldots, 2m\}, \ j \in \{2m+1, \ldots, 4m+2\}. \) But \(\chi(K_{2m+1,2m+2}) = 2m + 2 \) and there are \(2m + 2 \) unused colours \(3, \ldots, m+3 \) and \(3m + 3, \ldots, 4m + 3. \) Colour the edges of \(F \) with these colours such that the following conditions are satisfied:

 - Let \(v_i \in V(G) \) be the vertex incident with no edge labelled 2. If \(v_j \in V(G) \) such that \(c(v_iv_j) = 1 \) and \(v_k \in V(H) \) such that \(c(v_iv_k) = 3, \) then \(c(v_jv_k) \neq 4m + 3. \)
 - Let \(v_p \in V(G) \) be the vertex incident with no edge labelled 1. If \(v_q \in V(G) \) such that \(c(v_pv_q) = 2 \) and \(v_r \in V(H) \) such that \(c(v_pv_r) = 3, \) then \(c(v_qv_r) \neq 4m + 3. \)

Such a colouring is easily found by arbitrarily assigning a proper colouring to \(F, \) and switching two colour classes if one of the two conditions is violated (there are at least four colour classes in \(F \) as \(m \geq 1).\)

As an example, a colouring of \(K_7 \) is given in Figure 3. It is clear that \(c \) is a proper edge colouring of \(K_{4m+3} \) in \(4m + 5 \) colours.

Theorem 10. For all \(m \geq 1, \) the colouring \(c \) of \(K_{4m+3} \) has flatness equal to three.

Proof. Let \(F, \ G, \) and \(H \) be the subgraphs of \(K_{4m+3} \) defined above and let \(e, f \in E(K_{4m+3}) \) be adjacent edges such that \(c(e) < c(f). \) By Fact 4, it is sufficient to show \(S(a) \) or \(S(b) \) holds. Let \(e = v_jv_i \) and \(f = v_jv_k. \) Observe that at each vertex, exactly two colours do not appear as colours of edges incident with it, at least one of which is either 1 or \(4m + 5. \) Thus if \(c(e) \geq 5, \) at least two of 2, 3, 4 are incident with \(v_j, \) and thus \(v_j \) is adjacent to some vertex \(v_l \neq v_k \) such that \(c(v_lv_j) < c(e), \) so \(S(a) \) holds.
Figure 3: Edge colouring c of K_7

Similarly, if $c(f) \leq 4m + 1$, at least two of $4m + 2, 4m + 3, 4m + 4$ are incident with v_k, and thus v_k is adjacent to some vertex $v_i \neq v_j$, such that $c(f) < c(v_kv_i)$, so $S(b)$ holds. Thus we consider $c(e) \in \{1, 2, 3, 4\}$ and $c(f) \in \{4m + 2, 4m + 3, 4m + 4, 4m + 5\}$.

Suppose $c(e) \in \{1, 2\}$. By construction, $c(f) \notin \{4m + 4, 4m + 5\}$. Thus $c(f) \in \{4m + 2, 4m + 3\}$, so $e \in E(G)$ and $f \in E(F)$. Thus there exists an edge v_kv_i such that $c(v_kv_i) \in \{4m + 4, 4m + 5\}$. As $j \neq l$, $S(b)$ holds. Similarly, if $c(f) \in \{4m + 4, 4m + 5\}$, $c(e) \in \{3, 4\}$, so $f \in E(H)$ and $e \in E(F)$. Thus there exists an edge v_lv_j such that $c(v_lv_j) \in \{1, 2\}$. As $j \neq l$, $S(a)$ holds.

Now we consider $c(e) \in \{3, 4\}$ and $c(f) \in \{4m + 2, 4m + 3\}$, and thus $e, f \in E(F)$. If $c(e) = 4$, then either there exists an edge $v_kv_i \in E(F)$ such that $c(v_kv_i) = 3$ and $l \neq k$ as F is bipartite, so $S(a)$ holds; otherwise v_j and v_k are both in $V(H)$, and there exists a vertex $v_p, p \neq j$, such that $c(v_kv_p) \in \{4m + 4, 4m + 5\}$ and $S(b)$ holds. Similarly, if $c(f) = 4m + 2$, then either there exists an edge $v_kv_i \in E(F)$ such that $c(v_kv_i) = 4m + 3$ and $l \neq k$ as F is bipartite, so $S(b)$ holds; otherwise v_j and v_k are both in $V(H)$, and there exists a vertex $v_p, p \neq j$, such that $c(v_kv_p) \in \{4m + 4, 4m + 5\}$ and $S(b)$ holds.

Finally, we consider $c(e) = 3$ and $c(f) = 4m + 3$. If $v_i \in V(G)$, then
there exists an edge $v_kv_l \in E(H)$ such that $c(v_kv_l) \in \{4m + 4, 4m + 5\}$ and $l \neq j$, so $S(b)$ holds. If $v_i \in V(H)$, then there exists an edge $v_i v_j \in E(G)$ such that $c(v_i v_j) \in \{1, 2\}$ and $l \neq k$ by construction, so $S(a)$ holds.

Thus we conclude the following.

Corollary 11. For all $n \geq 7$ and $n \equiv 3 \pmod{4}$, $\chi_\varepsilon(K_n) = n + 2$.

3 Conclusion

From Corollaries 6, 9, and 11, together with previous results, we obtain exact values of χ_ε for all $n \geq 6$:

Theorem 12. If $n \geq 6$, then

$$\chi_\varepsilon(K_n) = \begin{cases} n & \text{if } n \equiv 0 \pmod{4} \\ n + 1 & \text{if } n \equiv 1, 2 \pmod{4} \\ n + 2 & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$

Acknowledgements

The authors would like to thank C. M. Mynhardt for her valuable feedback during the preparation of this paper, as well as the anonymous referees for their helpful comments.

References

Figure 4: Edge colouring c^* of K_{13} with flatness three.
Figure 5: Edge colouring of K_9 with flatness three.