
Towards the Compression of First-Order
Resolution Proofs by Lowering Unit Clauses

Jan Gorzny1 ? and Bruno Woltzenlogel Paleo2 ??

1 jgorzny@uvic.ca, University of Victoria, Canada
2 bruno@logic.at, Vienna University of Technology, Austria

Abstract. The recently developed LowerUnits algorithm compresses
propositional resolution proofs generated by SAT- and SMT-solvers by
postponing and lowering resolution inferences involving unit clauses,
which have exactly one literal. This paper describes a generalization
of this algorithm to the case of first-order resolution proofs generated
by automated theorem provers. An empirical evaluation of a simplified
version of this algorithm on hundreds of proofs shows promising results.

1 Introduction

Most of the effort in automated reasoning so far has been dedicated to the
design and implementation of proof systems and efficient theorem proving pro-
cedures. As a result, saturation-based first-order automated theorem provers
have achieved a high degree of maturity, with resolution and superposition be-
ing among the most common underlying proof calculi. Proof production is an
essential feature of modern state-of-the-art provers and proofs are crucial for
applications where the user requires certification of the answer provided by the
prover. Nevertheless, efficient proof production is non-trivial, and it is to be
expected that the best, most efficient, provers do not necessarily generate the
best, least redundant, proofs. Therefore, it is a timely moment to develop meth-
ods that post-process and simplify proofs. While the foundational problem of
simplicity of proofs can be traced back at least to Hilbert’s 24th Problem, the
maturity of automated deduction has made it particularly relevant today.

For proofs generated by SAT- and SMT-solvers, which use propositional res-
olution as the basis for the DPLL and CDCL decision procedures, there is now
a wide variety of proof compression techniques. Algebraic properties of the res-
olution operation that might be useful for compression were investigated in [5].

The Reduce&Reconstruct algorithm [10] searches for locally redundant sub-
proofs that can be rewritten into subproofs of stronger clauses and with fewer
resolution steps. A linear time proof compression algorithm based on partial reg-
ularization was proposed in [2] and improved in [6]. Furthermore, [6] described a
linear time algorithm called LowerUnits that delays resolution with unit clauses.

? Supported by the Google Summer of Code 2014 program.
?? Stipendiat der Österreichischen Akademie der Wissenschaften (APART).

In contrast, for first-order theorem provers, there has been up to now (to
the best of our knowledge) no attempt to design and implement an algorithm
capable of taking a first-order resolution DAG-proof and efficiently simplifying
it, outputting a possibly shorter pure first-order resolution DAG-proof. There
are algorithms aimed at simplifying first-order sequent calculus tree-like proofs,
based on cut-introduction and Herbrand sequents [9, 7, 8]. There is also an algo-
rithm [12] that looks for terms that occur often in any TSTP [11] proof (including
first-order resolution DAG-proofs) and introduces abbreviations for these terms.
However, as the definitions of the abbreviations are not part of the output proof,
it cannot be checked by a pure first-order resolution proof checker.

In this paper, we initiate the process of lifting propositional proof compression
techniques to the first-order case, starting with the simplest known algorithm:
LowerUnits (described in [6]). As shown in Section 3, even for this simple algo-
rithm, the fact that first-order resolution makes use of unification leads to many
challenges that simply do not exist in the propositional case. In Section 4 we de-
scribe an easy to implement algorithm with linear time complexity (with respect
to the proof length) which partially overcomes these challenges. In Section 5 we
present experimental results obtained by applying this algorithm on hundreds of
proofs generated with the SPASS theorem prover. The next section introduces
the first-order resolution calculus using notations that are more convenient for
describing proof transformation operations.

2 The Resolution Calculus

We assume that there are infinitely many variable symbols (e.g. X, Y , Z, X1, X2,
. . .), constant symbols (e.g. a, b, c, a1, a2, . . .), function symbols of every arity
(e.g f , g, f1, f2, . . .) and predicate symbols of every arity (e.g. p, q, p1, p2,. . .). A
term is any variable, constant or the application of an n-ary function symbol to n
terms. An atomic formula (atom) is the application of an n-ary predicate symbol
to n terms. A literal is an atom or the negation of an atom. The complement of
a literal ` is denoted ` (i.e. for any atom p, p = ¬p and ¬p = p). The set of all
literals is denoted L. A clause is a multiset of literals.⊥ denotes the empty clause.
A unit clause is a clause with a single literal. Sequent notation is used for clauses
(i.e. p1, . . . , pn ` q1, . . . , qm denotes the clause {¬p1, . . . ,¬pn, q1, . . . , qm}). FV(t)
(resp. FV(`), FV(Γ)) denotes the set of variables in the term t (resp. in the
literal ` and in the clause Γ). A substitution {X1\t1, X2\t2, . . .} is a mapping
from variables {X1, X2, . . .} to, respectively, terms {t1, t2, . . .}. The application
of a substitution σ to a term t, a literal ` or a clause Γ results in, respectively, the
term tσ, the literal `σ or the clause Γσ, obtained from t, ` and Γ by replacing
all occurrences of the variables in σ by the corresponding terms in σ. The set
of all substitutions is denoted S. A unifier of a set of literals is a substitution
that makes all literals in the set equal. A resolution proof is a directed acyclic
graph of clauses where the edges correspond to the inference rules of resolution
and contraction (as explained in detail in Definition 1). A resolution refutation
is a resolution proof with root ⊥.

Definition 1 (First-Order Resolution Proof).
A directed acyclic graph 〈V,E, Γ 〉, where V is a set of nodes and E is a set
of edges labeled by literals and substitutions (i.e. E ⊂ V × 2L × S × V and

v1
`−→
σ
v2 denotes an edge from node v1 to node v2 labeled by the literal ` and

the substitution σ), is a proof of a clause Γ iff it is inductively constructible
according to the following cases:

– Axiom: If Γ is a clause, Γ̂ denotes some proof 〈{v},∅, Γ 〉, where v is a
new (axiom) node.

– Resolution: If ψL is a proof 〈VL, EL, ΓL〉 with `L ∈ ΓL and ψR is a
proof 〈VR, ER, ΓR〉 with `R ∈ ΓR, and σL and σR are substitutions such
that `LσL = `RσR and FV((ΓL \ {`L})σL) ∩ FV((ΓR \ {`R})σR) = ∅, then
ψL �σLσR

`L`R
ψR denotes a proof 〈V,E, Γ 〉 s.t.

V = VL ∪ VR ∪ {v} Γ = (ΓL \ {`L})σL ∪ (ΓR \ {`R})σR

E = EL ∪ ER ∪
{
ρ(ψL)

{`L}−−−→
σL

v, ρ(ψR)
{`R}−−−→
σR

v

}
where v is a new (resolution) node and ρ(ϕ) denotes the root node of ϕ. The
resolved atom ` is such that ` = `LσL = `RσR or ` = `LσL = `RσR.

– Contraction: If ψ′ is a proof 〈V ′, E′, Γ ′〉 and σ is a unifier of {`1, . . . `n}
with {`1, . . . `n} ⊆ Γ ′, then bψcσ{`1,...`n} denotes a proof 〈V,E, Γ 〉 s.t.

V = V ′ ∪ {v} E = E′ ∪ {ρ(ψ′)
{`1,...`n}−−−−−−→

σ
v} Γ = (Γ ′ \ {`1, . . . `n})σ ∪ {`}

where v is a new (contraction) node, ` = `kσ (for any k ∈ {1, . . . , n}) and
ρ(ϕ) denotes the root node of ϕ. ut

The resolution and contraction (factoring) rules described above are the stan-
dard rules of the resolution calculus, except for the fact that we do not require
resolution to use most general unifiers. The presentation of the resolution rule
here uses two substitutions, in order to explicitly handle the necessary renaming
of variables, which is often left implicit in other presentations of resolution.

When we write ψL �`L`R ψR, we assume that the omitted substitutions are
such that the resolved atom is most general. We write bψc for an arbitrary maxi-
mal contraction, and bψcσ for a (pseudo-)contraction that does merge no literals
but merely applies the substitution σ. When the literals and substitutions are
irrelevant or clear from the context, we may write simply ψL � ψR instead of
ψL �σLσR

`L`R
ψR. The � operator is assumed to be left-associative. In the proposi-

tional case, we omit contractions (treating clauses as sets instead of multisets)
and ψL �∅∅

``
ψR is abbreviated by ψL �` ψR.

If ψ = ϕL�ϕR or ψ = bϕc, then ϕ, ϕL and ϕR are direct subproofs of ψ and
ψ is a child of both ϕL and ϕR. The transitive closure of the direct subproof
relation is the subproof relation. A subproof which has no direct subproof is an
axiom of the proof.

Vψ, Eψ and Γψ denote, respectively, the nodes, edges and proved clause
(conclusion) of ψ. If ψ is a proof ending with a resolution node, then ψL and ψR
denote, respectively, the left and right premises of ψ.

3 First-Order Challenges

In this section, we describe challenges that have to be overcome in order to
successfully adapt LowerUnits to the first-order case. The first example illus-
trates the need to take unification into account. The other two examples discuss
complex issues that can arise when unification is taken into account in a naively.

Example 1. Consider the following proof ψ, noting that the unit subproof η2 is
used twice. It is resolved once with η1 (against the literal p(W) and producing
the child η3) and once with η5 (against the literal p(X) and producing ψ).

η1: p(W) ` q(Z) η2: ` p(Y)

η3: ` q(Z) η4: p(X), q(Z) `
η5: p(X) ` η2

ψ: ⊥

The result of deleting η2 from ψ is the proof ψ \ {η2} shown below:

η′1: p(W) ` q(Z) η′4: p(X), q(Z) `
η′5 (ψ′): p(W), p(X) `

Unlike in the propositional case, where the literals that had been resolved against
the unit are all syntactically equal, in the first-order case, this is not necessarily
the case. As illustrated above, p(W) and p(X) are not syntactically equal. Nev-
ertheless, they are unifiable. Therefore, in order to reintroduce η′2, we may first
perform a contraction, as shown below:

η′1: p(W) ` q(Z) η′4: p(X), q(Z) `
η′5: p(X), p(Y) `
bη′5c: p(U) ` η′2: ` p(Y)

ψ?: ⊥

Example 2. There are cases, as shown below, when the literals that had been
resolved away are not unifiable, and then a contraction is not possible.

η2

η4: r(X), p(b) ` s(Y)

η1: p(a) ` q(Y), r(Z) η2: ` p(X)

η3: ` q(Y), r(Z)

η5: p(b) ` s(Y), q(Y) η6: s(Y) `
η7: p(b) ` q(Y) η8: q(Y) `

η9: p(b) `
ψ: ⊥

If we attempted to postpone the resolution inferences involving the unit η2 (i.e.
by deleting η2 and reintroducing it with a single resolution inference in the
bottom of the proof), a contraction of the literals p(a) and p(b) would be needed.
Since these literals are not unifiable, the contraction is not possible. Note that,
in principle, we could still lower η2 if we resolved it not only once but twice
when reintroducing it in the bottom of the proof. However, this would lead to
no compression of the proof’s length.

The observations above lead to the idea of requiring units to satisfy the following
property before collecting them to be lowered.

Definition 2. Let η be a unit with literal ` and let η1, . . . , ηn be subproofs that
are resolved with η in a proof ψ, respectively, with resolved literals `1, . . . , `n.
η is said to satisfy the pre-deletion unifiability property in ψ if `1,. . . ,`n, and `
are unifiable.

Example 3. Satisfaction of the pre-deletion unifiability property is not enough.
Deletion of the units from a proof ψ may actually change the literals that had
been resolved away by the units, because fewer substitutions are applied to them.
This is exemplified below:

η1: r(Y), p(X, q(Y, b)), p(X,Y) ` η2: ` p(U, V)

η3: r(V), p(U, q(V, b)) ` η4: ` r(W)

η5: p(U, q(W, b)) ` η2

ψ: ⊥

If η2 is collected for lowering and deleted from ψ, we obtain the proof ψ \ {η2}:

η′1: r(Y), p(X, q(Y, b)), p(X,Y) ` η′4: ` r(W)

η′5(ψ′): p(X, q(W, b)), p(X,W) `

Note that, even though η2 satisfies the pre-deletion unifiability property (since
p(X, q(Y, b)) and p(U, q(W, b)) are unifiable), η2 still cannot be lowered and rein-
troduced by a single resolution inference, because the corresponding modified
post-deletion literals p(X, q(W, b)) and p(X,W) are actually not unifiable.

The observation above leads to the following stronger property:

Definition 3. Let η be a unit with literal `η and let η1, . . . , ηn be subproofs that
are resolved with η in a proof ψ, respectively, with resolved literals `1, . . . , `m. η
is said to satisfy the post-deletion unifiability property in ψ if `†↓1 ,. . . ,`†↓m , and

`†η are unifiable, where `† is the literal in ψ \ {η} corresponding to ` in ψ and `†↓k
is the descendant of `†k in the root of ψ \ {η}.

4 A Linear Greedy Variant of First-Order LowerUnits

The examples shown in the previous section indicate that there are two main
challenges that need to be overcome in order to generalize LowerUnits to the
first-order case:

1. The deletion of a node changes literals. Since substitutions associated with
the deleted node are not applied anymore, some literals become more general.
Therefore, the reconstruction of the proof during deletion needs to take such
changes into account.

2. Whether a unit should be collected for lowering must depend on whether
the literals that were resolved with the unit’s single literal are unifiable after
they are propagated down to the bottom of the proof by the process of unit
deletion. Only if this is the case, they can be contracted and the unit can be
reintroduced in the bottom of the proof.

The first challenge can be overcome by keeping an additional map from old
literals in the input proof to the corresponding more general changed literals in
the output proof under construction. The second challenge is harder to overcome.
In the propositional case, collecting units and deleting units can be done in two
distinct and independent phases (as in LowerUnits). In the first-order case, on
the other hand, these two phases seem to be so interlaced, that they appear to be
in a deadlock: the decision to collect a unit to be lowered depends on what will
happen with the proof after deletion, while deletion depends on knowing which
units will be lowered. In a naive approach, the deletion algorithm may have to be
executed once for every collected unit, and since the number of collected units is
in the worst case linear in the length of the proof, the overall runtime complexity
is quadratic with respect to the length of the proof.

This section presents GreedyLinearFirstOrderLowerUnits (Algorithm 1), a
single traversal first-order adaptation of LowerUnits, which avoids the quadratic
complexity and the implementation difficulties by: 1) ignoring the stricter post-
deletion unifiability property and focusing instead on the pre-deletion unifiability
property, which is easier to check (lines 13); and 2) employing a greedy contrac-
tion approach (lines 19-22) together with substitutions (lines 7-10), in order not
to care about bookkeeping. By doing so, compression may not always succeed
on all proofs (e.g. Example 3). When compression succeeds, the root clause of
the generated proof will be the empty clause (line 24) and the generated proof
may be returned. Otherwise, the original proof must be returned (line 25).

5 Experiments

A prototype of a (two-traversal) version of GreedyLinearFirstOrderLowerUnits
has been implemented in the functional programming language Scala as part
of the Skeptik library (https://github.com/Paradoxika/Skeptik) [3]. Before
evaluating this algorithm, we first generated several benchmark proofs. This
was done by executing the SPASS (http://www.spass-prover.org/) theorem
prover on 2280 real first-order problems without equality of the TPTP Problem
Library (among them, 1032 problems are known to be unsatisfiable). In order
to generate pure resolution proofs, the advanced inference rules of SPASS were
disabled. The Euler Cluster at the University of Victoria was used and the time
limit was 300 seconds per problem. Under these conditions, SPASS generated
308 proofs.

The evaluation of GreedyLinearFirstOrderLowerUnits was performed on
a laptop (2.8GHz Intel Core i7 processor with 4 GB of RAM (1333MHz DDR3)
available to the Java Virtual Machine). For each benchmark proof ψ, we mea-
sured the time needed to compress the proof (t(ψ)) and the compression ratio

Input: a proof ψ
Output: a compressed proof ψ?

Data: a map .′, eventually mapping any ϕ to delete(ϕ, Units)

1 D ← ∅ ; // set for storing subproofs that need to be deleted

2 Units ← ∅ ; // stack for storing collected units

3 for every subproof ϕ, in a top-down traversal of ψ do
4 if ϕ is an axiom then ϕ′ ← ϕ;
5 else if ϕ = ϕL �σLσR`L`R

ϕR then

6 if ϕL ∈ D and ϕR ∈ D then add ϕ to D ;
7 else if ϕL ∈ D then ϕ′ ← bϕ′

RcσR ;
8 else if ϕR ∈ D then ϕ′ ← bϕ′

LcσL ;

9 else if ` /∈ Γϕ′
L
then ϕ′ ← bϕ′

LcσL ;

10 else if ` /∈ Γϕ′
R

then ϕ′ ← bϕ′
RcσR ;

11 else ϕ′ ← ϕ′
L �

σLσR
`L`R

ϕ′
R ;

12 else if ϕ = bϕccσ{`1,...,`n} then ϕ′ ← bϕ′
ccσ{`1,...,`n} ;

13 if ϕ is a unit with more than one child satisfying the pre-deletion unifiability
property then

14 push ϕ′ onto Units;
15 add ϕ to D ;

// Reintroduce units

16 ψ? ← ψ′ ;
17 while Units 6= ∅ do
18 ϕ′ ← pop from Units;
19 ψ?next ← bψ?c ;
20 while Γψ?

next
6= ψ? do

21 ψ? ← ψ?next ;
22 ψ?next ← bψ?c ;

23 if ψ? � ϕ′ is well-defined then ψ? ← ψ? � ϕ′ ;

24 if Γψ? = ⊥ then return ψ?;
25 else return ψ;

Algorithm 1: GreedyLinearFirstOrderLowerUnits (single traversal)

((|ψ| − |α(ψ)|)/|ψ|), where |ψ| is the length of ψ (i.e. the number of axioms,
resolution and contractions (ignoring substitutions)) and α(ψ) is the result of
applying GreedyLinearFirstOrderLowerUnits to ψ. The raw data is available
at: http://www.math.uvic.ca/~jgorzny/data/.

The proofs generated by SPASS were small (with lengths from 3 to 49). These
proofs are specially small in comparison with the typical proofs generated by
SAT- and SMT-solvers, which usually have from a few hundred to a few million
nodes. The number of proofs (compressed and uncompressed) per length is shown
in Figure 1 (b). Uncompressed proofs are those which had either no lowerable
units to lower or for which GreedyLinearFirstOrderLowerUnits failed and

returned the original proof. Such failures occurred on only 14 benchmark proofs.
Among the smallest of the 308 proofs, very few proofs were compressed. This is
to be expected, since the likelihood that a very short proof contain a lowerable
unit (or even merely a unit with more than one child) is low. The proportion of
compressed proofs among longer proofs is, as expected, larger, since they have
more nodes and it is more likely that some of these nodes are lowerable units.
13 out of 18 proofs with length greater than or equal to 30 were compressed.

Figure 1 (a) shows a box-whisker plot of compression ratio with proofs
grouped by length and whiskers indicating minimum and maximum compres-
sion ratio achieved within the group. Besides the median compression ratio (the
horizontal thick black line), the chart also shows the mean compression ratios
for all proofs of that length and for all compressed proofs (the red cross and the
blue circle). In the longer proofs (length greater than 34), the median and the
means are in the range from 5% to 15%, which is satisfactory in comparison with
the total compression ratio of 7.5% that has been measured for the propositional
LowerUnits algorithm on much longer propositional proofs [4].

Figure 1 (c) shows a scatter plot comparing the length of the input proof
against the length of the compressed proof. For the longer proofs (circles in the
right half of the plot), it is often the case that the length of the compressed proof
is significantly lesser than the length of the input proof.

Figure 1 (d) plots the cumulative original and compressed lengths of all
benchmark proofs (for an x-axis value of k, the cumulative curves show the sum
of the lengths of the shortest k input proofs). The total cumulative length of all
original proofs is 4429 while the cumulative length of all proofs after compression
is 3929. This results in a total compression ratio of 11.3%, which is impressive,
considering that the inclusion of all the short proofs (in which the presence of
lowerable units is a priori unlikely) tends to decrease the total compression ratio.
For comparison, the total compression ratio considering only the 100 longest
input proofs is 18.4%.

Figure 1 also indicates an interesting potential trend. The gap between the
two cumulative curves seems to grow superlinearly. If this trend is extrapolated,
progressively larger compression ratios can be expected for longer proofs. This
is compatible with Theorem 10 in [6], which shows that, for proofs generated
by eagerly resolving units against all clauses, the propositional LowerUnits al-
gorithm can achieve quadratic assymptotic compression. SAT- and SMT-solvers
based on CDCL (Conflict-Driven Clause Learning) avoid eagerly resolving unit
clauses by dealing with unit clauses via boolean propagation on a conflict graph
and extracting subproofs from the conflict graph with every unit being used at
most once per subproof (even when it was used multiple times in the conflict
graph). Saturation-based automated theorem provers, on the other hand, might
be susceptible to the eager unit resolution redundancy described in Theorem 10
[6]. This potential trend would need to be confirmed by further experiments with
more data (more proofs and longer proofs).

The total time needed by SPASS to solve the 308 problems for which proofs
were generated was 2403 seconds, or approximately 40 minutes (running on

Proof Length Before Compression

C
om

pr
es

si
on

 R
at

io

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 36 37 38 40 41 49

0

0.05

0.1

0.15

0.2

0.25 ●

●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

Mean
Mean (Compressed Only)

(a) Compression ratio

Proof Length Before Compression

N
um

be
r

of
 P

ro
of

s

0

5

10

15

20

25

30

35
Compressed
Not Compressed

3 4 5 6 7 8 9 10 11 12 13 14 15 17 16 19 18 21 20 23 22 25 24 26 29 28 31 30 34 32 33 38 36 37 40 41 49

(b) Number of (non-)compressed proofs

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

Proof Length Before Compression

P
ro

of
 L

en
gt

h
A

fte
r

C
om

pr
es

si
on

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

(c) Compressed length against input length

Original Proof Length
Compressed Proof Length

Number of Proofs (sorted by input length)

C
um

ul
at

iv
e

P
ro

of
 L

en
gt

h

0

500

1000

1500

2000

2500

3000

3500

4000

4500

20
8

21
8

22
8

23
8

24
8

25
8

26
8

27
8

28
8

29
8

30
8

(d) Cumulative proof lengths

Fig. 1: Experimental results

the Euler Cluster and including parsing time and proof generation time for
each problem). The total time for GreedyLinearFirstOrderLowerUnits to be
executed on all 308 proofs was just under 5 seconds on a simple laptop (including
parsing each proof). Therefore, GreedyLinearFirstOrderLowerUnits is a fast
algorithm. For a very small overhead in time (in comparison to proving time),
it may simplify the proof considerably.

6 Conclusions and Future Work

GreedyLinearFirstOrderLowerUnits is our first attempt to lift a propositional
proof compression algorithm to the first-order case. We consider it a prototype,
useful to evaluate this approach. The results discussed in the previous section
are encouraging, especially in comparison with existing results for the propo-
sitional case. In the near future, we shall seek improvements of this algorithm
as well as other ways to overcome the difficulties related to the post-deletion
unifiability property. The difficulties related to unit reintroduction suggest that
other propositional proof compression algorithms that do not require reintroduc-
tion (e.g. RecyclePivotsWithIntersection [6]) might need less sophisticated
bookkeeping when lifted to first-order.

The efficiency and versatility of contemporary automated theorem provers
depend on inference rules and techniques that go beyond the pure resolution
calculus. The generalization of compression algorithms to support such extended
calculi will be essential for their usability on a wider range of problems.

References

1. Logic for Programming, Artificial Intelligence, and Reasoning - 16th Intl. Conf.,
Dakar, Senegal, Rev. Selected Papers, LNCS. Springer, 2010.

2. O. Bar-Ilan, O. Fuhrmann, S. Hoory, O. Shacham, and O. Strichman. Linear-
time reductions of resolution proofs. In Haifa Verif. Conf., LNCS, pages 114–128.
Springer, 2008.

3. J. Boudou, A. Fellner, and B. Woltzenlogel Paleo. Skeptik: A proof compression
system. In Auto. Reason. - 7th Intl. Conf., LNCS, pages 374–380. Springer, 2014.

4. J. Boudou and B. Woltzenlogel Paleo. Compression of propositional resolution
proofs by lowering subproofs. In Automated Reasoning with Analytic Tableaux and
Related Methods - 22th Intl. Conf., LNCS, pages 59–73. Springer, 2013.

5. P. Fontaine, S. Merz, and B. Woltzenlogel Paleo. Exploring and exploiting algebraic
and graphical properties of resolution. In 8th Intl. Wkshp. on SMT, Edinburgh,
2010.

6. P. Fontaine, S. Merz, and B. Woltzenlogel Paleo. Compression of propositional res-
olution proofs via partial regularization. In CADE, LNCS, pages 237–251. Springer,
2011.

7. S. Hetzl, A. Leitsch, G. Reis, and D. Weller. Algorithmic introduction of quantified
cuts. Theor. Comput. Sci., 549:1–16, 2014.

8. S. Hetzl, A. Leitsch, D. Weller, and B. Woltzenlogel Paleo. Herbrand sequent
extraction. In 9th Intl. Conf. on Intell. Comput. Math., LNCS, pages 462–477.
Springer, 2008.

9. B. Woltzenlogel Paleo. Atomic cut introduction by resolution: Proof structuring
and compression. In LPAR-16 [1], pages 463–480.

10. S. F. Rollini, R. Bruttomesso, and N. Sharygina. An efficient and flexible approach
to resolution proof reduction. In Hardware and Software: Verification and Testing,
LNCS, pages 182–196. Springer, 2011.

11. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

12. J. Vyskocil, D. Stanovský, and J. Urban. Automated proof compression by inven-
tion of new definitions. In LPAR-16 [1], pages 447–462.

