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Abstract

Lexicographic Breadth First Search (LBFS) is one of fundamental graph search
algorithms that has numerous applications, including recognition of graph classes,
computation of graph parameters, and detection of certain graph structures. The
well-known result on the end-vertices of LBFS of chordal graphs has tempted re-
searchers to study the end-vertices of LBFS of various classes of graphs, including
chordal graphs, split graphs, interval graphs, and asteroidal triple-free (AT-free)
graphs. In this paper we study the end-vertices of LBFS of bipartite graphs. We
show that deciding whether a vertex of a bipartite graph is the end-vertex of an
LBFS is an NP-complete problem. In contrast we characterize the end-vertices of
LBFS of AT-free bipartite graphs. Our characterization implies that the problem
of deciding whether a vertex of an AT-free bipartite graph is the end-vertex of an
LBFS is solvable in polynomial time.

Key words: Lexicographic breadth first search, end-vertex, bipartite graphs, AT-free,
proper interval bigraph, characterization, algorithm.

1 Introduction

In 1976, Rose, Tarjan and Lueker [21] introduced a variant of the Breadth First Search
(BFS) called the Lexicographic Breadth First Search (LBFS). LBFS modifies the selection
rule of BFS to selecting at each step of the search a vertex whose neighbours among the
visited vertices form a lexicographically the least recent set. This seemingly little modi-
fication has a surprising impact on the resulting vertex ordering of the input graph. As
shown in [21], when the input graph is chordal, the vertex ordering produced by an LBFS
(called an LBFS ordering) is a perfect elimination ordering. Since perfect elimination
orderings exist only for chordal graphs, LBFS correctly recognizes chordal graphs and
finds perfect elimination orderings whenever possible. With perfect elimination orderings
of chordal graphs, the basic optimization problems (the maximum clique, the minimum
colouring, the maximum independent set, and the minimum clique covering) can all be
solved efficiently, cf. [16].
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The key for proving the ordering of a chordal graph produced by an LBFS is a perfect
elimination ordering is to show that the last visited vertex (called the end-vertex) of an
LBFS is a simplicial vertex. The characteristic 4-point property of LBFS orderings (cf.
[3, 10]) and the fact that the input graphs contains no induced cycles of length four or more
are central to the proof. The beautiful 4-point property of LBFS orderings and the elegant
description of the end-vertices of LBFS of chordal graphs have tempted researchers to
explore LBFS orderings and end-vertices of other graphs, cf. [1, 2, 5, 6, 7, 9, 13, 11, 12, 14].

Corneil, Olariu and Stewart [11, 12] studied the end-vertices of LBFS of Asteroidal
Triple-free (AT-free) graphs and the end-vertices of interval graphs. They showed that the
end-vertex of an LBFS of an AT-free graph is admissible, cf. [11]. Since interval graphs
are chordal and AT-free, the end-vertex of an LBFS of an interval graph is both simplicial
and admissible. It turns out that the converse is also true. Thus the end-vertices of LBFS
of interval graphs are precisely those which are both simplicial and admissible, cf. [12].

Theoretical and algorithmic results on end-vertices of LBFS of (general) graphs are
obtained in [2, 9]. It is shown in [2] that the end-vertex of an LBFS of an arbitrary
graph must be in a moplex (which is a clique module whose neighbourhood is a minimal
separator). In [9] it is shown that being both simplicial and admissible guarantees a vertex
to be the end-vertex of an LBFS of a graph and moreover, the following two problems
have been considered:

End-vertex problem:

Instance: A graph G on n vertices with a specified vertex t.
Question: Is there an LBFS ordering σ of G such σ(n) = t?

Beginning-end-vertex problem:

Instance: A graph G on n vertices with two specified vertices s, t.
Question: Is there an LBFS ordering σ of G such that σ(1) = s and σ(n) = t?

The end-vertex problem is NP-complete for general graphs and remains NP-complete
for the class of weakly chordal graphs, cf. [9]. For the class of split graphs, the problem
is solvable in polynomial time, cf. [6]. The characterization of the end-vertices of LBFS
of interval graphs (as mentioned above) implies that the end-vertex problem is solvable
in polynomial time for interval graphs. In fact, the end-vertex problem is shown to be
polynomial time solvable for the larger class of strongly chordal graphs, cf. [6]. Despite
many results on the (LBFS) end-vertices of chordal graphs and of AT-free graphs are
known, the end-vertex problem remains elusive for either class of graphs. There are few
results on the beginning-end-vertex problem. Like the end-vertex problem, the beginning-
end-vertex problem is NP-complete for weakly chordal graphs, cf. [9].

In this paper, we consider the end-vertex problem as well as the beginning-end-vertex
problem for bipartite graphs. It was left as an open problem in [6] to determine the
complexity of the end-vertex problem for bipartite graphs. We prove that both the end-
vertex and the begining-end-vertex problems for bipartite are NP-complete. We also study
the end-vertex problem for AT-free bipartite graphs. We characterize the end-vertices of
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LBFS of AT-free bipartite graphs. Our characterization implies the end-vertex problem
on AT-free bipartite graphs is solvable in polynomial time. It is known that every end-
vertex v of LBFS of an AT-free graph G is admissible and has eccentricity differ by at
most one from the diameter of G. It is easy to show that each admissible vertex v of
an AT-free graph G with eccentricity equal to the diameter of G is the end-vertex of
an LBFS. The complication arises when the eccentricity differs from the diameter of the
graph. We provide a simple condition for such a vertex to be the end-vertex of an LBFS.
The class of AT-free bipartite graphs coincides with the class of proper interval graphs, cf.
[4]. Our characterization of the end-vertices of LBFS of AT-free bipartite graphs may be
viewed as a result parallel to the characterization of the end-vertices of LBFS of interval
graphs.

All graphs considered in this paper are simple (i.e., containing no loops or multiple
edges). Let G be a graph and v be a vertex v in G. We use N(v) to denote the neigh-
bourhood and N [v] (= N(v) ∪ {v}) the closed neighbourhood of v. We say that a path P
misses vertex v in G if P ∩ N [v] 6= ∅. A dominating path in G is a path P such that no
vertex in G is missed by P . A pair of vertices x, y is a dominating pair if every (x, y)-path
is a dominating path in G.

An asteroidal triple in G is an independent set of three vertices such that between any
two of the three vertices there is a path that misses the third vertex. If G does not contain
an asteroidal triple then it is called asteroidal triple-free (AT-free). Two vertices x, y of G
are called unrelated with respect to z if there exists an (x, z)-path that misses y and there
is a (y, z)-path that misses x. A vertex z is admissible if there do not exist two vertices
unrelated with respect z. According to [11], every LBFS-ordering σ of an AT-free graph
is an admissible elimination ordering, that is, for each i = 1, 2, . . . , n, σ(i) is an admissible
vertex in the subgraph induced by σ(1), σ(2), . . . , σ(i); in particular, every AT-free graph
has an admissible vertex. Admissible vertices can be used to find dominating pairs and
in fact, every admissible vertex is a dominating pair vertex, cf. [11].

We use d(x, y) to denote the distance between vertices x, y. The diameter of G, denoted
by diam(G), is the maximum distance of any two vertices. If d(x, y) = diam(G), then we
say that x, y are a diametrical pair. When x, y are both diametrical and dominating, they
are called a diametrical dominating pair.

For a vertex w, we use Lℓ(w) to denote the set of all vertices u with d(u, w) = ℓ. The
maximum value ℓ for which Lℓ(w) 6= ∅ is called the eccentricity of w and is denoted by
ecc(w). When ℓ = ecc(w), each vertex of Lℓ(w) is called an eccentric vertex of w.

A graph is chordal if it does not contain an induced cycle of length ≥ 4. Every chordal
graph has a simplicial vertex (i.e., N(v) induces a clique). As mentioned above, every
LBFS-ordering σ of a chordal graph is a perfect elimination ordering, that is, for each i =
1, 2, . . . , n, σ(i) is a simplicial vertex in the subgraph of G induced by σ(1), σ(2), . . . , σ(i).
A graph G is an interval graph if there is a family of intervals Iv, v ∈ V (G) such that two
vertices u, v are adjacent in G if and only if Iu ∩ Iv 6= ∅. Interval graphs are exactly the
AT-free chordal graphs, cf. [20].

We shall also call a bipartite graph a bigraph. A bipartite graph G with bipartition
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(X, Y ) is called an interval bigraph if there is a family of intervals Iv, v ∈ X ∪ Y in a line
such that for all x ∈ X and y ∈ Y , x, y are adjacent in G if and only if Ix ∩ Iy 6= ∅,
cf. [17, 18]. If the intervals can be chosen so that no interval properly contains another
interval then G is called a proper interval bigraph. Various characterizations of interval
bigraphs and proper interval bigraphs can be found in [4, 17, 18]. In particular, proper
interval bigraphs are precisely the AT-free bigraphs.

2 General bigraphs

The end-vertex problem and the begining-end-vertex problem are both NP-complete for
weakly chordal graphs, cf. [9]. It was left as an open problem in [6] to determine the
complexity of the end-vertex problem for bigraphs. In this section we will show that
the end-vertex problem and the begining-end-vertex problem are both NP-complete for
bigraphs.

Theorem 2.1. The beginning-end-vertex problem is NP-complete for bigraphs.

The proof of Theorem 2.1 is similar to the one in [6] which shows that the (corre-
sponding) beginning-end-vertex problem for BFS is NP-complete for bigraphs.
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Figure 1: The graph Hn

For every n ∈ N, we define the graph Gn, with the special vertex rn called the root,
recursively as follows:

• G0 is the graph with one vertex r0.

• Gn is obtained from Gn−1 and the graph Hn in Figure 1 by first adding an edge
between the root rn−1 of Gn−1 and the vertex cn in Hn and then attaching to yn
(respectively, yn) an (xn, yn)-path (respectively, an (xn, yn)-path) of length 4n− 3.

The graph G1 is simply the one obtained from H1 by adding three vertices x1, r0, x1

adjacent to y1, c1, y1 respectively. The graph G2 is depicted in Figure 2.

It is easy to verify that each Gn is bipartite and has 4n2+8n+1 vertices. Each vertex
in Gn is of distance at most 4n from the root rn. The vertices of distance 4n from rn in
Gn are x1, . . . , xn, r0, x1, . . . , xn. The following proposition will be useful in the proof of
Theorem 2.1.
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Figure 2: The graph G2.

Proposition 2.2. Let σ be an LBFS ordering of Gn with σ(1) = rn. Then for each
1 ≤ i ≤ n, either σ−1(xi) < σ−1(r0) < σ−1(xi) or σ−1(xi) < σ−1(r0) < σ−1(xi), that is
exactly one of xi and xi is before r0 in σ. Moreover, each of the 2n choices of one between
xi and xi for each 1 ≤ i ≤ n can be obtained as the set of vertices that appear before r0
for some LBFS ordering of Gn.

Proof: We prove this by induction on n. When n = 0, there is nothing to prove.
Assume the statements hold for Gn−1 and consider Gn. Starting at rn, the LBFS selects
either an or an to visit next. Suppose that an is visited before an (i.e., σ−1(an) < σ−1(an)).
Then among the four vertices of distance two from rn, b

′

n and bn will be visited before
either of bn, b′n. Hence the three vertices of distance three from rn must be visited in
the order yn, cn, yn, that is, σ

−1(yn) < σ−1(cn) < σ−1(yn). Note that yn, cn, yn belong to
different components of Gn−{b′n, bn, bn, b

′
n} that contain xn, r0, xn respectively. It follows

that we must have σ−1(xn) < σ−1(r0) < σ−1(xn). Similarly, if σ−1(an) < σ−1(an), then
σ−1(xn) < σ−1(r0) < σ−1(xn). Therefore exactly one of xn and xn is before r0 and any
one of the two vertices can appear before r0 for some LBFS ordering of Gn. The rest of
the statements follow from the inductive hypothesis.

Proof of Theorem 2.1: The proof uses a reduction from 3-SAT . Suppose that
I = (x1, . . . , xn;C1, . . . , Cm) is an instance of 3-SAT where each xi with 1 ≤ i ≤ n is a
variable and each Cj with 1 ≤ j ≤ m is a clause of size 3 over the variables and their
negations. We construct the graph GI from Gn (defined as above) by adding m+ 1 new
vertices c1, c2, . . . , cm, t in such a way that t is adjacent only to r0 and for each 1 ≤ i ≤ n
and 1 ≤ j ≤ m, cj is adjacent to xi (respectively, xi) if and only if xi (respectively, xi)
is contained in the clause Cj. We claim that I is satisfiable if and only if there is an
LBFS ordering of GI that begins at rn and ends at t. First note that every vertex in
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GI is of distance at most 4n + 1 from rn and the vertices of distance 4n + 1 from rn are
c1, c2, . . . , cm, t. Suppose that σ is an LBFS ordering of GI that begins at rn and ends at
t. We assign a truth value to each variable as follows: for each x ∈ {x1, . . . , xn}, x is true
if and only if σ−1(x) < σ−1(r0). By Proposition 2.2, exactly one of xi and xi is assigned
to be true for each 1 ≤ i ≤ n. Since σ−1(cj) < σ−1(t) for each 1 ≤ j ≤ m, each cj must
be adjacent to a vertex that is before r0 in σ, that is, at least one variable in Cj is true.
Hence I is satisfiable. Conversely, suppose that there is a truth value assignment to the
variables that satisfies I. By Proposition 2.2, there is an LBFS ordering of GI that begins
at rn such that the vertex xi appears before r0 if and only if the corresponding variable
xi is true for each 1 ≤ i ≤ n. Since each Cj contains at least one true variable, the vertex
cj is adjacent to at least one vertex appear before r0 in the LBFS ordering. Therefore the
LBFS ordering must end at t.

Proposition 2.3. The beginning-end-vertex problem reduces in polynomial time to the
end-vertex problem (for bigraphs).

Proof: Given a graph G with two specified vertices s, t, we build G′ from G by
attaching to s an (s, s′)-path P of length diam(G) + 1. Clearly, G′ can be constructed in
polynomial time (and when G is bipartite so is G′). If some LBFS ordering of G begins
at s and ends at t, then it is easy to see that there is an LBFS ordering of G′ that begins
at s′ and ends at t. Conversely, if some LBFS ordering of G′ that ends at t, then it must
begin at some vertex in P , which implies there is an LBFS ordering of G that begins at
s and ends at t.

Combining Theorems 2.1 and 2.3 we have the following:

Theorem 2.4. The end-vertex problem is NP-complete for bigraphs.

3 AT-free bigraphs

The goal of this section is to characterize the end-vertices of LBFS of AT-free bigraphs and
to show that the end-vertex problem is solvable in polynomial time for AT-free bigraphs.
To achieve this goal a few lemmas need to be in place first.

Lemma 3.1. [8, 11] If v is the end-vertex of an LBFS of an AT-free graph G, then v
is admissible and ecc(v) ≥ diam(G)− 1.

Lemma 3.2. [11] Let G be a connected AT-free graph G and v be an admissible vertex
in G. Suppose that there is an LBFS ordering which begins at v and ends at w. Then v, w
are a dominating pair in G. Moreover, if ecc(v) = diam(G), then v, w are a diametrical
dominating pair.

Let z be a vertex in graph G and ℓ be a natural number. Recall that Lℓ(z) is the set
of all vertices of distance ℓ from z. We shall use Nℓ(a) to denote the set of all neighbours
of a in Lℓ(z), that is, Nℓ(a) = N(a) ∩ Lℓ(z).
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Lemma 3.3. Let G be an AT-free bigraph and z be a vertex of G. Suppose that C is
a connected component of G−N [z] and that a, b ∈ Lℓ(z) are two vertices in C. Then

1. Nℓ−1(a) ⊆ Nℓ−1(b) or Nℓ−1(a) ⊇ Nℓ−1(b);

2. Nℓ+1(a) ⊆ Nℓ+1(b) or Nℓ+1(a) ⊇ Nℓ+1(b);

3. Nℓ−1(a) ⊆ Nℓ−1(b) if and only if Nℓ+1(a) ⊇ Nℓ+1(b).

Proof: Since a, b /∈ N [z], ℓ ≥ 2. Suppose that Nℓ−1(a) 6⊆ Nℓ−1(b) and Nℓ−1(a) 6⊇
Nℓ−1(b). Then there exist a′ ∈ Nℓ−1(a) \ Nℓ−1(b) and b′ ∈ Nℓ−1(b) \ Nℓ−1(a). We claim
that z, a, b form an asteroidal triple, a contradiction to the assumption that G is AT-
free. Indeed, any (a, b)-path in C misses z, any shortest (a, z)-path containing a′ misses
b and similarly any shortest (b, z)-path containing b′ misses a. This proves statement 1.
Statement 2 follows from statement 1.

For statement 3, suppose to the contrary that Nℓ−1(a) ( Nℓ−1(b) and Nℓ+1(a) (

Nℓ+1(b). Then there exist b′ ∈ Nℓ−1(b)\Nℓ−1(a) and b′′ ∈ Nℓ+1(b)\Nℓ+1(a). By statemen 1,
there exists a′ ∈ Nℓ−1(a) ∩Nℓ−1(b). We show that G contains an asteroidal triple, which
is a contradiction. Suppose that ℓ = 2. Then z is adjacent to both a′, b′. By statement 2
there exists a′′ ∈ Nℓ+1(a)∩Nℓ+1(b). We obtain an asteroidal triple {z, a′′, b′′}: za′aa′′ is a
path missing b′′, ab′bb′′ is a path missing a′′, and a′′bb′′ is a path missing z. Suppose that
ℓ > 2. Then again by statement 1 (applied to a′, b′) there exists z′ ∈ Nℓ−2(a

′) ∩Nℓ−2(b
′).

Let z′′ be any vertex in Nℓ−3(z
′). We obtain an asteroidal triple {a, b′′, z′′}: aa′bb′′ is a

path missing z′′, aa′a′z′′ is a path missing b′′, and b′′bb′z′z′′ is a path missing a.

Suppose that C is a component of G \N [z] and a, b ∈ N(z). It follows from Lemma
3.3 that either N(a) ∩ C ⊆ N(b) ∩ C or N(a) ∩ C ⊇ N(b) ∩ C. In particular, if c ∈ N(z)
is a vertex adjacent to the maximum number of vertices in C, then for any u ∈ Lℓ(z)∩C
with ℓ ≥ 2, d(c, u) ≤ ℓ − 1. We call C a deep component of G \ N [z] if it contains an
eccentric vertex of z. Note that a deep component of G−N [z] exists when and only when
ecc(z) ≥ 2.

Lemma 3.4. Let G be an AT-free bigraph and z be a vertex of G. If ecc(z) ≥ 3, then
G−N [z] has at most two deep components.

Proof: Suppose that G − N [z] has three or more deep components. Let a, b, c be
eccentric vertices of z belonging to three different deep components of G − N [z]. Then
d(a, z) = d(b, z) = d(c, z) = ecc(z) ≥ 3. Since a, b, c belong to three different deep
components of G−N [z], each of a, b, c is joined to z by a path that misses the other two
vertices. It follows that there is a path joining any pair of a, b, c that misses the third
vertex, i.e., {a, b, c} is an asteroidal triple, a contradiction to the assumption that G is
AT-free.

We remark that, when eec(z) = 2, G−N [z] can have any number of deep components
as each vertex in L2(z) forms one of those.

Lemma 3.5. Let G be an AT-free bigraph and v be an admissible vertex with ecc(v) =
diam(G)− 1. Suppose that x, y are a diametrical dominating pair. Then v is adjacent to
one of x, y. Moreover, there is a shortest (x, y)-path containing v.
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Proof: Let k = diam(G). Suppose that v is adjacent to neither of x, y. Let P :
xx1x2 . . . xk−1y be a shortest (x, y)-path. We claim that v is not in P . Indeed, v 6= x1

and v 6= xk−1 as v is adjacent to neither of x, y. If v = xi for some 1 < i < k − 1,
then x, y are unrelated vertices with respect to v; xx1 . . . xi is an (x, v)-path that misses
y and yxk−1 . . . xi is a (y, v)-path that misses x, a contradiction to the assumption that
v is admissible. Hence v is not in P . The arbitrary choice of P implies that v is not in
any shortest (x, y)-path. Since x, y are a dominating pair, v is adjacent to xj for some
1 ≤ j ≤ k − 1. If j 6= 1 and j 6= k − 1, then xx1 . . . xjv is an (x, v)-path that misses y
and yxk−1 . . . xjv is a (y, v)-path that misses x, a contradiction. So j = 1 or j = k − 1.
Assume without loss of generality that j = k− 1. Then d(v, y) = 2. Since ecc(v) = k− 1,
d(x, v) ≤ k − 1. If d(x, v) ≤ k − 2, then k = d(x, y) ≤ d(x, v) + d(v, y) ≤ k − 2 + 2 = k,
which implies that v is contained a shortest (x, y)-path, a contradiction. So d(x, v) = k−1.
Now any (x, v)-path of length k − 1 along with the path xx1 . . . xk−1v form a closed walk
of length 2k − 1. This contradicts the assumption that G is bipartite. Therefore v is
adjacent to one of x, y.

To prove that there is a shortest (x, y)-path containing v, we assume by symmetry
that v is adjacent to y. Then d(x, y) ≤ d(x, v) + 1 ≤ ecc(v) + 1 = k − 1 + 1 = d(x, y).
This implies that there is a shortest (x, y)-path containing v.

Figure 3 shows two graphs in which the vertex v satisfies ecc(v) = diam(G) − 1
but is not the end-vertex of any LBFS. Figure 4 shows a graph in which v satisfies
ecc(v) = diam(G) − 1 and is the end-vertex of an LBFS; the numbering is an LBFS
ordering.

v

v

Figure 3: Two graphs in which v satisfies ecc(v) = diam(G)− 1 but is not the end-vertex
of any LBFS.

126 4

35v 7

Figure 4: A graph in which v satisfies ecc(v) = diam(G)− 1 and is the end-vertex of an
LBFS.

Theorem 3.6. Let G be a connected AT-free bigraph and v be a vertex of G. Then v
is the end-vertex of an LBFS if and only if there exists a vertex w such that, for every
eccentric vertex u of w, N(v) ⊆ N(u).

Proof: Suppose that there exists a vertex w such that, for every eccentric vertex u of
w, N(v) ⊆ N(u). If G has only one vertex, then v clearly the end-vertex of an LBFS. So
assume that G has at least two vertices. If v = w, then ecc(w) = 2 and G is a complete
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bigraph and any eccentric vertex w′ of w satisfies the property that N(v) ⊆ N(u) for
every eccentric vertex u of w′ and hence can be used in the placec of w. So we may
assume that v 6= w. Apply LBFS begining at w. It must ends at an eccentric vertex of
w. Since N(v) ⊆ N(u) for every eccentric vertex u of w, v is an eccentric vertex of w and
it is possible to have it being visited last.

For the other direction suppose that v is an LBFS end-vertex. Let k = diam(G). By
Lemma 3.1, v is admissible and ecc(v) ≥ k−1. We show there exists a vertex w such that
N(v) ⊆ N(u) for every eccentric vertex u of w. When k ≤ 2, G is a complete bigraph.
Giving the fact that v is an LBFS end-vertex it is easy to see such a vertex w exists. So
we assume k ≥ 3. We consider two cases:

Case 1. ecc(v) = k.

Let w be any vertex with d(v, w) = k. Clearly v is an eccentric vertex of w. Suppose
there exists an eccentric vertex u of w such that N(v) 6⊆ N(u). If u and v are in the same
component of G − N [w] then by Lemma 3.3, N(u) ( N(v) and v cannot be an LBFS
end-vertex, contradicting the assumption. Hence u and v belong to different components
of G−N [w]. But then we have d(u, v) ≥ 2(k − 1) > k, a contradiction.

Case 2. ecc(v) = k − 1.

Let σ be an LBFS ordering with σ(n) = v and let z = σ(1). Clearly, v is an eccentric
vertex of z. If N(v) ⊆ N(u) for every eccentric vertex u of z then we are done. So assume
that this is not the case; there is an eccentric vertex u of z such that N(v) 6⊆ N(u). The
existence of such a vertex u implies ecc(z) ≥ 2.

Consider first the case when ecc(z) = 2. Then k ≤ 4 as any two vertices are joined by
a path of length ≤ 4 (through the vertex z). Let A = N(v)\N(u), B = N(u)\N(v), and
C = N(u) ∩N(v). Since N(v) 6⊆ N(u), A 6= ∅. Since v is an LBFS end-vertex, B 6= ∅. If
C = ∅, then d(u, v) ≥ 4 and hence

ecc(v) ≥ d(u, v) ≥ 4 ≥ k = ecc(v) + 1,

a contradiction. Thus C 6= ∅. Clearly, (A ∪ B ∪ C) ⊆ N(z). In fact we must have
A∪B∪C = N(z) as otherwise any vertex in N(z)\ (A∪B∪C) would form an asteroidal
triple with u, v, a contradiction to the assumption that G is AT-free. It is easy to see
that the distance between v and any vertex in B is 3. This implies that k = 4 and
hence ecc(v) = k − 1 = 3. Let x, y be any pair of diametrical vertices. Clearly, x, y are
both eccentric vertices of z. Each of x, y must have a neighbour in A ∪ B as otherwise
its distance to v is 4, contradicting the fact that ecc(v) = 3. Let x′, y′ ∈ A ∪ B be the
neighbours of x, y respectively. Then xx′v is an (x, v)-path missing y and yy′v is a path
missing x. Hence x, y are unrelated vertices with respect to v, which contradicts the fact
that v is admissible. So from now on we may assume that ecc(z) ≥ 3.

By Lemma 3.3, u and v belong to different components of G − N [z]. Denote by
C1, C2 the two components of G − N [z] which contain u, v respectively. Since u, v are
both eccentric vertices of z belonging to the different components C1, C2 of G − N [z],
d(u, v) ≥ 2(ecc(z) − 1) and C1, C2 are deep components of G− N [z]. In view of Lemma
3.4, C1, C2 are the only deep components of G−N [z]. Let x, y be a diametrical dominating
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pair in G which exists according to Lemma 3.2. Then by Lemma 3.5, v is adjacent to one
of x, y. Assume by symmetry that v is adjacent to y, which implies that y is also in C2

and d(z, y) = d(z, v)−1 = ecc(z)−1. We show (by contradiction) that x is in C1 and is an
eccentric vertex of z. Indeed, if x is not an eccentric vertex of z, then d(x, z) ≤ ecc(z)−1;
if x is in C2, let c ∈ N(z) be a vertex adjacent to the maximum number of vertices in C2,
then d(x, c) ≤ ecc(z)− 1 and d(c, y) ≤ ecc(z)− 2 (see the remarks following Lemma 3.3).
In the former case, we have d(x, y) ≤ d(x, z)+d(z, y) ≤ 2ecc(z)−2 and in the latter case,
we have d(x, y) ≤ d(x, c) + d(c, y) ≤ 2ecc(z)− 3. Hence

ecc(v) + 1 = k = d(x, y) ≤ 2(ecc(z)− 1) ≤ d(u, v) ≤ ecc(v),

which is a contradiction. Therefore x is in C1 and is an eccentric vertex of z. Since x, y
is a dominating pair, for every eccentric vertex b of z in C1 we must have N(b) ⊇ N(x).

Consider a shortest (x, y)-path that contains v, which exists according to Lemma 3.5.
Let P : xx1x2 . . . xk−2vy be such a path. Then P must contain a vertex in N(z) as x and
y belong to the different components C1, C2 of G− N [z] respectively. Let xα ∈ N(z) be
the vertex in P with the smallest subscript and let Q be the subpath xαxα+1 . . . vy of P .
Since ecc(z)−1 ≤ d(xα, v) = d(xα, y)−1 ≤ ecc(z) and d(xα, v) cannot be ecc(z), we must
have d(xα, v) = ecc(z)− 1 = d(xα, y)− 1. Hence the length Q is exactly ecc(z). It follows
that P does not contain z and moreover, if Q is replaced by an (xα, y)-path of length
ecc(z) through z then we obtain another shortest (x, y)-path P ′ containing z but not v.
The existence of the shortest (x, y)-path P ′ (containing z) further implies the length of
xx1x2 . . . xα is ecc(z)− 1. Therefore we know that k = 2ecc(z)− 1 = 2α + 1.

Let y′ be any vertex in N(z) with d(y′, y) = ecc(z) − 2. Then xα−1 and y′ are not
adjacent as otherwise replacing the subpath Q of P by any (y′, y)-path of length ecc(z)−2
we obtaining an (x, y)-path shorter than P , a contradiction to the fact that P is a shortest
(x, y)-path. For the same reason xα is not adjacent to any vertex in a shortest (y′, y)-path.
Since N(xα)∩C2 and N(y′)∩C2 are comparable (see the remarks following Lemma 3.3),
y′ must be adjacent to xα+1. Thus we have two vertices xα, y

′ ∈ N(z), both adjacent to
xα+1 and only xα adjacent to xα−1.

Let A be the set of all vertices a ∈ L2(z) ∩C1 with σ−1(a) < σ−1(xα+1) and d(a, x) =
ecc(z)− 2. Since σ−1(x) < σ−1(v), A 6= ∅. No vertex a in A is adjacent to y′ as otherwise
any (x, a)-path of length ecc(z)−2 and any (y′, y)-path of length ecc(z)−2 together with
ay′ form an (x, y)-path of length 2ecc(z)−3, a contradiction to d(x, y) = k = 2ecc(z)−1.
Furthermore, every vertex a ∈ A has a neighbour in N(z) which is not a neighbour of
xα+1 since σ−1(a) < σ−1(xα+1).

Let w be a vertex in N(z) that is a neighbour of some vertex a ∈ A but not a neighbour
of xα+1. We show that the vertex w satisfies the properties desired by the theorem. First
it is easy to see that d(w, v) = ecc(z)+1 (= 1

2
(k+3) and wzxαxα+1 . . . xk−2v is a shortest

(w, v)-path). Consider an arbitrary vertex b of G. If b is not an eccentric vertex of z,
then d(z, b) ≤ ecc(z)− 1 and hence d(w, b) ≤ d(w, z) + d(z, b) = 1 + ecc(z)− 1 = ecc(z).
If b ∈ C1 is an eccentric vertex of z, then from the above we know that N(b) ⊇ N(x)
and so d(w, b) = d(w, x) = ecc(z) − 1. If b ∈ C2 is an eccentric vertex of z, then
d(w, b) ≤ d(w, z) + d(z, b) = eec(z) + 1. Thus the eccentric vertices b of w are eccentric
vertices of z in C2 and hence we must have N(v) ⊆ N(b). This completes the proof.
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Since the necessary and sufficent condition in Theorem 3.6 for a vertex to be the
end-vertex of an LBFS can be verified in polynomial time, we have the following:

Theorem 3.7. The end-vertex problem for AT-free bigraphs is polynomial time solv-
able.

4 Concluding remarks

We have proved in this paper that the end-vertex problem and the begining-end-vertex
problem are both NP-complete for bigraphs and that the end-vertex problem is polynomial
time solvable for AT-free bigraphs. The NP-completeness result solves an open problem
from [6]. The result on AT-free bigraphs follows from a characterization of the end-vertices
of LBFS of AT-free bigraphs obtained also in this paper. With a slight modification
of the reduction one can show that the beginning-end-vertex problem is NP-complete
for bigraphs of maximum degree three and the end-vertex problem is NP-complete for
bigraphs of maximum degree four.

The end-vertex problem and the beginning-end-vertex problem for other graph search
algorithms have been studied in [6, 15]. We state some of the results obtained in [15]:
The end-vertex problem for Depth First Search (DFS) is NP-complete for bigraphs. The
end-vertex problem for Lexicographic Depth First Search (LDFS) is also NP-complete
for chordal graphs. Each of these solves an open problem in [6]. The begining-end-
vertex problem for BFS is polynomial time solvable for split graphs. This follows from a
characterization of pairs s, t in split graphs for which some BFS begins at s and ends at
t, which is a slight refinement of a result obtained in [6].
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